Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional fi...Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional film for infrared window under different aerodynamic heats/forces conditions.Temperature and stress distribution were obtained with different heat fluxes.There is almost constant stress distribution along the film thickness except a sudden decrease near the substrate.The maximum stresses are located at the points which are 0.3 mm away from the edges.Different film materials result in different stress values.The temperature and stress in ZrN are larger than those in Y2O3.Besides the numerical simulation,an oxygen propane flame jet impingement test was performed to investigate thermal shock failure of the infrared window.Some place of the window surface has spots damage and some place has line crack damage after thermal shock.展开更多
A phenomenological thermodynamic theory is applied to investigate the effect of misfit strgin and electric field on the electrocaloric effect of P(VDF-TrFN)/SrTiO3 bilayer thin films. Theoretical results indicate th...A phenomenological thermodynamic theory is applied to investigate the effect of misfit strgin and electric field on the electrocaloric effect of P(VDF-TrFN)/SrTiO3 bilayer thin films. Theoretical results indicate that the low electric field results in the decrease of the average polarization with the increase of the relative thickness of SrTi03 layer, and the high electric field has an opposite effect on it. Moreover, the electroealoric effect strongly depends on the electric field. The low electric field and the small field change can lead to a maximum of the electrocaloric effect, meanwhile the high electric field or the large field change results in the opposite trend.展开更多
基金Projects (51222205,51372053) supported by the National Natural Science Foundation of ChinaProject (JC201305) supported by Heilongjiang Provincial Science Fund for Distinguished Young Scholars,ChinaProject (20112302110036) supported by Ph.D. Programs Foundation of Ministry of Education of China
文摘Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional film for infrared window under different aerodynamic heats/forces conditions.Temperature and stress distribution were obtained with different heat fluxes.There is almost constant stress distribution along the film thickness except a sudden decrease near the substrate.The maximum stresses are located at the points which are 0.3 mm away from the edges.Different film materials result in different stress values.The temperature and stress in ZrN are larger than those in Y2O3.Besides the numerical simulation,an oxygen propane flame jet impingement test was performed to investigate thermal shock failure of the infrared window.Some place of the window surface has spots damage and some place has line crack damage after thermal shock.
基金Supported by the National Natural Science Foundation of China under Grant No. 10904053Sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Qing Lan Project
文摘A phenomenological thermodynamic theory is applied to investigate the effect of misfit strgin and electric field on the electrocaloric effect of P(VDF-TrFN)/SrTiO3 bilayer thin films. Theoretical results indicate that the low electric field results in the decrease of the average polarization with the increase of the relative thickness of SrTi03 layer, and the high electric field has an opposite effect on it. Moreover, the electroealoric effect strongly depends on the electric field. The low electric field and the small field change can lead to a maximum of the electrocaloric effect, meanwhile the high electric field or the large field change results in the opposite trend.