热点温度是影响金属化薄膜电容器(metallized film capacitors,MFC)绝缘寿命的重要因素之一,但由于其无法直接测量,因此通常采用热仿真分析或温度反演的方法获得。该文提出了基于共轭梯度法(conjugategradient method,CG)的热点温度反...热点温度是影响金属化薄膜电容器(metallized film capacitors,MFC)绝缘寿命的重要因素之一,但由于其无法直接测量,因此通常采用热仿真分析或温度反演的方法获得。该文提出了基于共轭梯度法(conjugategradient method,CG)的热点温度反演模型,建立了内部传热过程的温度分布目标函数,采用有限差分法求解电容器温度场,再通过CG对内部温度分布进行迭代求解。同时,通过交流温升试验校核了仿真模型以及反演模型。研究结果表明:热点温升与表面温升存在线性关系,热点温度出现在MFC中央靠近芯轴处,反演模型与仿真模型最大误差为4.35%,说明该模型可实现现场工况下的温度分布、热点分布等的有效预测。展开更多
金属化聚丙烯薄膜电容器(metallized polypropylene film capacitors, MPPFC)在充电条件下的自愈击穿可能造成电极和介质膜的永久性损伤,导致其电容减少和介电损耗增加。基于此,本文研究了MPPFC充电过程中的宏观特征量—自愈电压、自愈...金属化聚丙烯薄膜电容器(metallized polypropylene film capacitors, MPPFC)在充电条件下的自愈击穿可能造成电极和介质膜的永久性损伤,导致其电容减少和介电损耗增加。基于此,本文研究了MPPFC充电过程中的宏观特征量—自愈电压、自愈能量、电极损失面积等的演变规律并结合仿真分析了介质膜表面微观结构的变化特性。结果显示,自愈能量随自愈电压增加呈幂函数增长,与电极损失面积正相关,受电弧放电的影响,高压电极损失面积大于地电极且形状较地电极规则,其边界分形维数平均值(1.525)小于地电极(1.665)。此外,电极孔洞缺口轴向边缘的电流密度高于切向边缘,致使金属化聚丙烯薄膜自愈击穿过程中金属化电极轴向损伤高于切向。了解这些特性对全面揭示多场耦合复杂工况下MPPFC物性演化规律具有重要意义。展开更多
文摘热点温度是影响金属化薄膜电容器(metallized film capacitors,MFC)绝缘寿命的重要因素之一,但由于其无法直接测量,因此通常采用热仿真分析或温度反演的方法获得。该文提出了基于共轭梯度法(conjugategradient method,CG)的热点温度反演模型,建立了内部传热过程的温度分布目标函数,采用有限差分法求解电容器温度场,再通过CG对内部温度分布进行迭代求解。同时,通过交流温升试验校核了仿真模型以及反演模型。研究结果表明:热点温升与表面温升存在线性关系,热点温度出现在MFC中央靠近芯轴处,反演模型与仿真模型最大误差为4.35%,说明该模型可实现现场工况下的温度分布、热点分布等的有效预测。
文摘金属化聚丙烯薄膜电容器(metallized polypropylene film capacitors, MPPFC)在充电条件下的自愈击穿可能造成电极和介质膜的永久性损伤,导致其电容减少和介电损耗增加。基于此,本文研究了MPPFC充电过程中的宏观特征量—自愈电压、自愈能量、电极损失面积等的演变规律并结合仿真分析了介质膜表面微观结构的变化特性。结果显示,自愈能量随自愈电压增加呈幂函数增长,与电极损失面积正相关,受电弧放电的影响,高压电极损失面积大于地电极且形状较地电极规则,其边界分形维数平均值(1.525)小于地电极(1.665)。此外,电极孔洞缺口轴向边缘的电流密度高于切向边缘,致使金属化聚丙烯薄膜自愈击穿过程中金属化电极轴向损伤高于切向。了解这些特性对全面揭示多场耦合复杂工况下MPPFC物性演化规律具有重要意义。