Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstruc...Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.展开更多
To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrati...To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrations.Composition,micro-morphology,wettability of the films and their corrosion behavior in a Hank's SBF were studied.Our experimental results show that the film is mainly composed of anatase,rutile and amorphous phases.With an increase in electrolytic concentration,the ratio of rutile in films enlarge and small amounts of calcium phosphate(Ca3(PO4)2) and hydroxyapatite(HA) appear.The number of micropores in films increases but their dimensions decrease and their porosities increase slightly.As the surface roughness of MAO film increases with concentration,the wettablility of the oxide film improves continually,while micro-hardness increases at first and then decreases.MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.展开更多
To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)te...To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.展开更多
基金Project(NCET-11-0127)supported by Program for New Century Excellent Talents in University,ChinaProject(K1306063-11)supported by the Key Project for Science and Technology of Changsha,China
文摘Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.
基金Projects 50535050 supported by the National Natural Science Foundation of ChinaNCET-06-0479 by the Program for New Century Excellent Talents in University of China
文摘To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrations.Composition,micro-morphology,wettability of the films and their corrosion behavior in a Hank's SBF were studied.Our experimental results show that the film is mainly composed of anatase,rutile and amorphous phases.With an increase in electrolytic concentration,the ratio of rutile in films enlarge and small amounts of calcium phosphate(Ca3(PO4)2) and hydroxyapatite(HA) appear.The number of micropores in films increases but their dimensions decrease and their porosities increase slightly.As the surface roughness of MAO film increases with concentration,the wettablility of the oxide film improves continually,while micro-hardness increases at first and then decreases.MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.
基金National Key Research and Development Program of China(2022YFB4002100)。
文摘To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.