Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) proc...Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.展开更多
Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide.The dispersion was produced by chemical reduction of gra...Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide.The dispersion was produced by chemical reduction of graphene oxide,and the film thickness was controlled with the amount of spray volume.AFM measurements revealed that the thin films have near-atomically flat surface.The chemical and structural parameters of the samples were analyzed by Raman and XPS studies.It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region.The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 k?with a light transmittance of 68.69%at 550 nm.The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.展开更多
Gallium-titanium-zinc oxide(GTZO) transparent conducting oxide(TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic prope...Gallium-titanium-zinc oxide(GTZO) transparent conducting oxide(TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction(XRD) and scanning electron microscopy(SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.展开更多
基金supported by the Yeungnam University Research Grants in 2009
文摘Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.
基金supported by the National Key Basic Research Program of China(Grant No.2013CBA01703)the National Natural Science Foundation of China(Grant No.11174355)+2 种基金Teknologiateollisuus TT-100the European Union’s Seventh Framework Programme(Grant No.631610)Aalto University(Finland)
文摘Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide.The dispersion was produced by chemical reduction of graphene oxide,and the film thickness was controlled with the amount of spray volume.AFM measurements revealed that the thin films have near-atomically flat surface.The chemical and structural parameters of the samples were analyzed by Raman and XPS studies.It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region.The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 k?with a light transmittance of 68.69%at 550 nm.The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.
基金supported by the National Natural Science Foundation of China(No.11504436)the Natural Science Foundation of Hubei Province(No.2015CFB364)the Fundamental Research Funds for the Central Universities(Nos.CZW14019 and CZW15045)
文摘Gallium-titanium-zinc oxide(GTZO) transparent conducting oxide(TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction(XRD) and scanning electron microscopy(SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.