The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscop...The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.展开更多
AIM: to compare the feasibility and patients' tolerance of esophagogastroduodenoscopy (EGD) using a thin endoscope with those of conventional oral EGD and to determine the optimal route of introduction of smallcal...AIM: to compare the feasibility and patients' tolerance of esophagogastroduodenoscopy (EGD) using a thin endoscope with those of conventional oral EGD and to determine the optimal route of introduction of smallcaliber endoscopes. METHODS: One hundred and sixty outpatients referred for diagnostic EGD were randomly allocated to 3 groups: conventional (C)-EGD (9.8 mm in diameter), transnasal (TN)-EGD and transoral (TO)-EGD (5.9 mm in diameter). Pre-EGD anxiety was measured using a 100-mm visual analogue scale (VAS). After EGD, patients and endoscopists completed a questionnaire on the pain, nausea, choking, overall discomfort, and quality of the examination either using VAS or answering some questions. The duration of EGD was timed. Blood oxygen saturation (SaO2) and heart rate (HR) were monitored during EGD. RESULTS: Twenty-one patients refused to participate in the study. The 3 groups were well-matched for age, gender, experience with EGD, and anxiety. EGD was completed in 91.1% (41/45), 97.5% (40/41), and 96.2% (51/53) of cases in TN-EGD, TO-EGD, and C-EGD groups, respectively. TN-EGD lasted longer (3.11 ± 1.60 min) than TO-EGD (2.25 ± 1.45 min) and C-EGD (2.49 ± 1.64 rain) (P 〈 0.05). The overall tolerance was higher (P 〈 0.05) and the overall discomfort was lower (P 〈 0.05) in TN-EGD group than in C-EGD group. EGD was tolerated "better than expected" in 73.2% of patients in TN-EGD group and 55% and 39.2% of patients in TO-EGD and C-EGD groups, respectively (P 〈 0.05). Endoscopy was tolerated "worst than expected" in 4.9% of patients in TN-EGD group and 17.5% and 23.5% of patients in TO- EGD and C-EGD groups, respectively (P 〈 0.05). TN-EGD caused mild epistaxis in one case, The ability to insuffiate air, wash the lens, and suction of the thin endoscope were lower than those of conventional instrument (P 〈 0,001), All biopsies performed were adequate for histological assessment. CONCLUSION: Diagnostic TN-EGD is better tolerated than C-EGD, Narrow-diameter endoscope has a level of diagnostic accuracy comparable to that of conventional gastroscope, even though some technical characteristics of these instruments should be improved, Transnasal EGD with narrow-diameter endoscope should be proposed to all patients undergoing diagnostic EGD.展开更多
Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin ...Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.展开更多
The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fl...The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fluoride film on EN deposition were studied additionally.The results show that the fluoride film on magnesium alloys is a kind of porous film composed of MgF2 with thickness of 1.6-3.2 μm.The composition of the activation bath and pretreatment of EN processing have influence on the composition of the fluoride film.The fluoride is stable and dissolves little in EN bath;as a result,the fluoride film can protect magnesium substrate from the corrosion of EN bath.The composition of fluoride determines the initial deposition of EN and part of the fluoride film finally exists as inclusion in EN coating.展开更多
Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities rangin...Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities ranging from 30.7700 to 96.2500 were obtained by chemical etching. Lattice parameters of the samples were measured using X-ray diffraction and its maximal change is up to (1.000.) This lattice mismatch with the bulk silicon substrate may introduce residual stress to the porous film. The residual stress measurement by micro-Raman spectroscopy reveals that the maximum of tensile residual stress has reached GPa level in the porous film. Moreover, the lattice mismatch and its corresponding residual stress are increasing with the porosity of PS, but average (elastic) modulus is about 14.5 GPa, one order of magnitude lower than that of substrate Si. The mechanical properties of PS have a close relation with its micro-pore structure.展开更多
Surface modification of Diamond-like carbon (DLC) films was carried out in order to estimate the reliability of the ultra thin DLC films. The wear resistance, conductivity and mechatronic reliability of the films were...Surface modification of Diamond-like carbon (DLC) films was carried out in order to estimate the reliability of the ultra thin DLC films. The wear resistance, conductivity and mechatronic reliability of the films were studied by contact atomic force microscope (AFM), electric force microscope (EFM) and conductive AFM. The failure mechanism of pits formed and the reason for conductivity changed of DLC films were examined.展开更多
N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the p...N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)展开更多
Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microsc...Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and ultraviolet-visible spectroscopy. The XRD results showed that the FWHM of Sn-doped ZnO film increased due to the substitution of Sn for Zn, the tin doping within the film causes the ZnO crystallinity to deteriorate. The grains of the film doped with Sn using dibutyltin diacetate were found to be non-uniform distribution through the sample but those appeared to form ganglia-like hills in the case of pure ZnO film. Furthermore, the Sn-doped ZnO films were tested with respect to the photocatalysis in aqueous solutions of MG (malachite green) upon UV-light illumination and in darkness. It was found that Sn-doped ZnO films prepared under specific conditions showed a lower photocatalytic activity than that of pure ZnO films.展开更多
ZnO thin films were prepared by electrophoretic deposition on stainless steel wire sieve, using zinc acetate as a precursor. The film was sintered and characterised by Scanning Electron Microscopy (SEM), X-Ray Diffr...ZnO thin films were prepared by electrophoretic deposition on stainless steel wire sieve, using zinc acetate as a precursor. The film was sintered and characterised by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and chemisorption of oxygen. A culture bacterial consortium composed by gram negative rod-shaped microbes was prepared in a liquid agar in a flask. It was transported by air through a reactor equipped with a UV lamp with 3 and 5 sieves of a stainless steel wire coated with ZnO film. It was exposed in continuous in five experiments to photocatalytic advanced oxidation. The experiments showed a total efficiency for colony forming unit reduction of a maximum of 99.66% for a residence time of 20 seconds with 5 stainless steel wire where exposed in continuous to UV. Also they were evaluated at 7.5 seconds, observing that the contribution of residence time and amount of catalytic for the CFU reduction was quite similar. Variance analysis showed that the efficiency was significant with the no parametric Kruskal-Wallis test with P 〈 0.05. This technology could be used to clean indoor air of closed environments such as hospitals, crowded buildings or public transportation systems where airborne bacteria has been documented.展开更多
In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM mic...In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed.展开更多
Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmi...Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.展开更多
Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused...Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moir6 patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moir6 patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples.展开更多
The charge-trapping process, with HfO2 film as the charge-capturing layer, has been investigated by using in situ electron energy-loss spectroscopy and in situ energy-filter image under positive external bias. The res...The charge-trapping process, with HfO2 film as the charge-capturing layer, has been investigated by using in situ electron energy-loss spectroscopy and in situ energy-filter image under positive external bias. The results show that oxygen vacancies are non-uniformly distributed throughout the HfO2 trapping layer during the programming process. The distribution of the oxygen vacancies is not the same as that of the reported locations of the trapped electrons, implying that the trapping process is more complex. These bias-induced oxygen defects may affect the device performance characteristics such as the device lifetime. This phenomenon should be considered in the models of trapping processes.展开更多
The kesterite-structured semiconductor Cu_2 Zn Sn(S,Se)_4(CZTSSe) is prepared by spin coating a non-hydrazine precursor and annealing at Se atmosphere. Local electrical and optoelectronic properties of the CZTSSe thin...The kesterite-structured semiconductor Cu_2 Zn Sn(S,Se)_4(CZTSSe) is prepared by spin coating a non-hydrazine precursor and annealing at Se atmosphere. Local electrical and optoelectronic properties of the CZTSSe thin-film are explored by Kelvin probe force microscopy and conductive atomic force microscopy. Before and after irradiation, no marked potential bending and very low current flow are observed at GBs, suggesting that GBs behave as a charge recombination site and an obstacle for charge transport. Furthermore, Cd S nano-islands are synthesized via successive ionic layer adsorption and reaction(SILAR) method on the surface of CZTSSe. By comparing the work function and current flow change of CZTSSe and Cd S in dark and under illumination, we demonstrate photo-induced electrons and holes are separated at the interface of p-n junction and transferred in Cd S and CZTSSe, respectively.展开更多
文摘The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.
文摘AIM: to compare the feasibility and patients' tolerance of esophagogastroduodenoscopy (EGD) using a thin endoscope with those of conventional oral EGD and to determine the optimal route of introduction of smallcaliber endoscopes. METHODS: One hundred and sixty outpatients referred for diagnostic EGD were randomly allocated to 3 groups: conventional (C)-EGD (9.8 mm in diameter), transnasal (TN)-EGD and transoral (TO)-EGD (5.9 mm in diameter). Pre-EGD anxiety was measured using a 100-mm visual analogue scale (VAS). After EGD, patients and endoscopists completed a questionnaire on the pain, nausea, choking, overall discomfort, and quality of the examination either using VAS or answering some questions. The duration of EGD was timed. Blood oxygen saturation (SaO2) and heart rate (HR) were monitored during EGD. RESULTS: Twenty-one patients refused to participate in the study. The 3 groups were well-matched for age, gender, experience with EGD, and anxiety. EGD was completed in 91.1% (41/45), 97.5% (40/41), and 96.2% (51/53) of cases in TN-EGD, TO-EGD, and C-EGD groups, respectively. TN-EGD lasted longer (3.11 ± 1.60 min) than TO-EGD (2.25 ± 1.45 min) and C-EGD (2.49 ± 1.64 rain) (P 〈 0.05). The overall tolerance was higher (P 〈 0.05) and the overall discomfort was lower (P 〈 0.05) in TN-EGD group than in C-EGD group. EGD was tolerated "better than expected" in 73.2% of patients in TN-EGD group and 55% and 39.2% of patients in TO-EGD and C-EGD groups, respectively (P 〈 0.05). Endoscopy was tolerated "worst than expected" in 4.9% of patients in TN-EGD group and 17.5% and 23.5% of patients in TO- EGD and C-EGD groups, respectively (P 〈 0.05). TN-EGD caused mild epistaxis in one case, The ability to insuffiate air, wash the lens, and suction of the thin endoscope were lower than those of conventional instrument (P 〈 0,001), All biopsies performed were adequate for histological assessment. CONCLUSION: Diagnostic TN-EGD is better tolerated than C-EGD, Narrow-diameter endoscope has a level of diagnostic accuracy comparable to that of conventional gastroscope, even though some technical characteristics of these instruments should be improved, Transnasal EGD with narrow-diameter endoscope should be proposed to all patients undergoing diagnostic EGD.
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
基金Supported by the National Natural Science Foundation of China (10776014) Nanjing University of Science and Technology (NUST) Research Funding
文摘Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.
基金Project(50101007) supported by the National Science Natural Foundation of China
文摘The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fluoride film on EN deposition were studied additionally.The results show that the fluoride film on magnesium alloys is a kind of porous film composed of MgF2 with thickness of 1.6-3.2 μm.The composition of the activation bath and pretreatment of EN processing have influence on the composition of the fluoride film.The fluoride is stable and dissolves little in EN bath;as a result,the fluoride film can protect magnesium substrate from the corrosion of EN bath.The composition of fluoride determines the initial deposition of EN and part of the fluoride film finally exists as inclusion in EN coating.
文摘Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities ranging from 30.7700 to 96.2500 were obtained by chemical etching. Lattice parameters of the samples were measured using X-ray diffraction and its maximal change is up to (1.000.) This lattice mismatch with the bulk silicon substrate may introduce residual stress to the porous film. The residual stress measurement by micro-Raman spectroscopy reveals that the maximum of tensile residual stress has reached GPa level in the porous film. Moreover, the lattice mismatch and its corresponding residual stress are increasing with the porosity of PS, but average (elastic) modulus is about 14.5 GPa, one order of magnitude lower than that of substrate Si. The mechanical properties of PS have a close relation with its micro-pore structure.
文摘Surface modification of Diamond-like carbon (DLC) films was carried out in order to estimate the reliability of the ultra thin DLC films. The wear resistance, conductivity and mechatronic reliability of the films were studied by contact atomic force microscope (AFM), electric force microscope (EFM) and conductive AFM. The failure mechanism of pits formed and the reason for conductivity changed of DLC films were examined.
基金the Portuguese Ministry of Science and Technology(FCT-MCTES)for offering post-doctoral fellowships through the grants SFRH/BPD/34542/2007 and SFRH/BPD/35055/2007,respectivelyfinanced by FCT-MCTES through CENIMAT-I3N
文摘N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)
文摘Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and ultraviolet-visible spectroscopy. The XRD results showed that the FWHM of Sn-doped ZnO film increased due to the substitution of Sn for Zn, the tin doping within the film causes the ZnO crystallinity to deteriorate. The grains of the film doped with Sn using dibutyltin diacetate were found to be non-uniform distribution through the sample but those appeared to form ganglia-like hills in the case of pure ZnO film. Furthermore, the Sn-doped ZnO films were tested with respect to the photocatalysis in aqueous solutions of MG (malachite green) upon UV-light illumination and in darkness. It was found that Sn-doped ZnO films prepared under specific conditions showed a lower photocatalytic activity than that of pure ZnO films.
文摘ZnO thin films were prepared by electrophoretic deposition on stainless steel wire sieve, using zinc acetate as a precursor. The film was sintered and characterised by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and chemisorption of oxygen. A culture bacterial consortium composed by gram negative rod-shaped microbes was prepared in a liquid agar in a flask. It was transported by air through a reactor equipped with a UV lamp with 3 and 5 sieves of a stainless steel wire coated with ZnO film. It was exposed in continuous in five experiments to photocatalytic advanced oxidation. The experiments showed a total efficiency for colony forming unit reduction of a maximum of 99.66% for a residence time of 20 seconds with 5 stainless steel wire where exposed in continuous to UV. Also they were evaluated at 7.5 seconds, observing that the contribution of residence time and amount of catalytic for the CFU reduction was quite similar. Variance analysis showed that the efficiency was significant with the no parametric Kruskal-Wallis test with P 〈 0.05. This technology could be used to clean indoor air of closed environments such as hospitals, crowded buildings or public transportation systems where airborne bacteria has been documented.
文摘In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed.
文摘Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 20973013, 51072004, 50821061, 20833001, 21073003, 20973006, and 50802003) and the Ministry of Science and Technology of China (Grant Nos. 2007CB936203, 2011CB921903, and 2009CB929403). Ruiqi Zhao also thanks the Doctoral Foundation of Henan Polytechnic University (Grant No. B2009-90).
文摘Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moir6 patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moir6 patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples.
基金Acknowledgements This work was supported by the National Basic Research Program of China (Nos. 2012CB932302, 2010CB934202 and 2013CB932904), the National Natural Science Foundation of China (No. 10974235).
文摘The charge-trapping process, with HfO2 film as the charge-capturing layer, has been investigated by using in situ electron energy-loss spectroscopy and in situ energy-filter image under positive external bias. The results show that oxygen vacancies are non-uniformly distributed throughout the HfO2 trapping layer during the programming process. The distribution of the oxygen vacancies is not the same as that of the reported locations of the trapped electrons, implying that the trapping process is more complex. These bias-induced oxygen defects may affect the device performance characteristics such as the device lifetime. This phenomenon should be considered in the models of trapping processes.
基金supported by the National Basic Research Program of China(2011CB9323012011CB808704)+2 种基金the National Natural Science Foundation of China(2112790121373236)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12020100)
文摘The kesterite-structured semiconductor Cu_2 Zn Sn(S,Se)_4(CZTSSe) is prepared by spin coating a non-hydrazine precursor and annealing at Se atmosphere. Local electrical and optoelectronic properties of the CZTSSe thin-film are explored by Kelvin probe force microscopy and conductive atomic force microscopy. Before and after irradiation, no marked potential bending and very low current flow are observed at GBs, suggesting that GBs behave as a charge recombination site and an obstacle for charge transport. Furthermore, Cd S nano-islands are synthesized via successive ionic layer adsorption and reaction(SILAR) method on the surface of CZTSSe. By comparing the work function and current flow change of CZTSSe and Cd S in dark and under illumination, we demonstrate photo-induced electrons and holes are separated at the interface of p-n junction and transferred in Cd S and CZTSSe, respectively.