For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR an...For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.展开更多
The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-L...The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.展开更多
基金The National Natural Science Foundation of China(No50378014),the National High Technology Research and Develop-ment Program of China (863Program) (No2002AA601011)
文摘For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.
基金supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAJ08B06)the National Major Project of Science & Technology Ministry of China (No. 2008ZX07421-002)the Shanghai Science & Technology Commission Key Scientific & Technological Project (No. 072312001), China
文摘The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.