In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLABTM GUI Designing Environment is proposed. The proposed ROV's GUI plat...In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLABTM GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can he added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.展开更多
Simulating the softness property of object is quite a challenge in virtual reality system. A novel softness display system was developed based on the principle of deformable length of elastic element control (DLEEC)...Simulating the softness property of object is quite a challenge in virtual reality system. A novel softness display system was developed based on the principle of deformable length of elastic element control (DLEEC). In the system, the equivalent stiffness of the device is adjustable, and is inversely proportional to the third power of the deformable length of elastic beam. PD position control is employed to guarantee the accurate softness display. The softness of the virtual objects in large scale can be felt with the softness display device. Compared with other haptic devices, the device is passive and exert the react force only when the operator "actively touch" the virtual objects. The stability of the softness display system was analyzed. It was theoretical proved that the system satisfied the criteria of wide impedance range "Z-width", and the performance was superior to an active system. The experimental results were presented.展开更多
The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Vi...The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Virtual Distortion Method (VDM), the control of water supply can be performed. Minimization of supply pressure in inlets to the network, subject to inequality constraints imposed on outlet pressure (in chosen nodes) is discussed. Taking advantage of pre-computed influence vectors, the real-time control strategy can be realised with small computational effort and therefore, can be managed with use of hardware-based controllers. Non-linear constitutive relation (water flow vs. pressure head) has been assumed.展开更多
基金Supported by the Newcastle University’s Project Account:C0570D2330
文摘In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLABTM GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can he added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
基金Supported by the National Basic Research and Development Program (No. 2002CB312102) and the National Natural Science Foundation of China (No. 60643007, 60475034).
文摘Simulating the softness property of object is quite a challenge in virtual reality system. A novel softness display system was developed based on the principle of deformable length of elastic element control (DLEEC). In the system, the equivalent stiffness of the device is adjustable, and is inversely proportional to the third power of the deformable length of elastic beam. PD position control is employed to guarantee the accurate softness display. The softness of the virtual objects in large scale can be felt with the softness display device. Compared with other haptic devices, the device is passive and exert the react force only when the operator "actively touch" the virtual objects. The stability of the softness display system was analyzed. It was theoretical proved that the system satisfied the criteria of wide impedance range "Z-width", and the performance was superior to an active system. The experimental results were presented.
文摘The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Virtual Distortion Method (VDM), the control of water supply can be performed. Minimization of supply pressure in inlets to the network, subject to inequality constraints imposed on outlet pressure (in chosen nodes) is discussed. Taking advantage of pre-computed influence vectors, the real-time control strategy can be realised with small computational effort and therefore, can be managed with use of hardware-based controllers. Non-linear constitutive relation (water flow vs. pressure head) has been assumed.