In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for...In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.展开更多
As a type II or III transmembrane glycoprotein, human CD38 is ubiquitously expressed in all mammalian tissues. CD38 is a multi-functional enzyme and a member of the ADP-ribosyl cyclase family, and it catalyzes nicotin...As a type II or III transmembrane glycoprotein, human CD38 is ubiquitously expressed in all mammalian tissues. CD38 is a multi-functional enzyme and a member of the ADP-ribosyl cyclase family, and it catalyzes nicotinamide adenine dinucleotide (NAD^+) and nicotinamide adenine dinucleotide phosphate (NADP+) to two distinct Ca^2+ messengers as follows: cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), respectively. Moreover, both cADPR and NAADP mediate mobilization of intracellular Ca^2+ targeting endoplasmic stores and the lysosomes, respectively. In this study, we combined ligand-based and structure-based virtual screening strategies to compare the inhibitor discovery efficacy based on natural substrates and the known inhibitors. The similarity queries towards SPECS database were carried out using ROCS and EON modules of OpenEye software. The hits were further docked to CD38 using AutoDock 4.05 program. In addition, ADME studies were also processed considering solubility in water and membrane permeability. Finally, we identified 17 compotmds-based on natural substrates and 10 compounds based on known inhibitor models. The results showed that the known inhibitor H2-based model was more efficient in virtual screening of CD38 non-covalent inhibitors.展开更多
基金supported in part by the State Major Science and Technology Special Projects under Grant No. 2012ZX03004001the National Basic Research Program (973) of China under Grants No. 2012CB315801, No. 2011CB302901the Chinese Universities Scientific Fund under Grant No. 2012RC0306
文摘In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.
基金National Natural Science Foundation of China(Grant No.21272017 and 81172917)
文摘As a type II or III transmembrane glycoprotein, human CD38 is ubiquitously expressed in all mammalian tissues. CD38 is a multi-functional enzyme and a member of the ADP-ribosyl cyclase family, and it catalyzes nicotinamide adenine dinucleotide (NAD^+) and nicotinamide adenine dinucleotide phosphate (NADP+) to two distinct Ca^2+ messengers as follows: cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), respectively. Moreover, both cADPR and NAADP mediate mobilization of intracellular Ca^2+ targeting endoplasmic stores and the lysosomes, respectively. In this study, we combined ligand-based and structure-based virtual screening strategies to compare the inhibitor discovery efficacy based on natural substrates and the known inhibitors. The similarity queries towards SPECS database were carried out using ROCS and EON modules of OpenEye software. The hits were further docked to CD38 using AutoDock 4.05 program. In addition, ADME studies were also processed considering solubility in water and membrane permeability. Finally, we identified 17 compotmds-based on natural substrates and 10 compounds based on known inhibitor models. The results showed that the known inhibitor H2-based model was more efficient in virtual screening of CD38 non-covalent inhibitors.