In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is respons...In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.展开更多
with the increasing popularity of cloud services,attacks on the cloud infrastructure also increase dramatically.Especially,how to monitor the integrity of cloud execution environments is still a difficult task.In this...with the increasing popularity of cloud services,attacks on the cloud infrastructure also increase dramatically.Especially,how to monitor the integrity of cloud execution environments is still a difficult task.In this paper,a real-time dynamic integrity validation(DIV) framework is proposed to monitor the integrity of virtual machine based execution environments in the cloud.DIV can detect the integrity of the whole architecture stack from the cloud servers up to the VM OS by extending the current trusted chain into virtual machine's architecture stack.DIV introduces a trusted third party(TTP) to collect the integrity information and detect remotely the integrity violations on VMs periodically to avoid the heavy involvement of cloud tenants and unnecessary information leakage of the cloud providers.To evaluate the effectiveness and efficiency of DIV framework,a prototype on KVM/QEMU is implemented,and extensive analysis and experimental evaluation are performed.Experimental results show that the DIV can efficiently validate the integrity of files and loaded programs in real-time,with minor performance overhead.展开更多
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)The Project Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.
基金Supported by the National Natural Science Foundation of China under Grant No. 61370068
文摘with the increasing popularity of cloud services,attacks on the cloud infrastructure also increase dramatically.Especially,how to monitor the integrity of cloud execution environments is still a difficult task.In this paper,a real-time dynamic integrity validation(DIV) framework is proposed to monitor the integrity of virtual machine based execution environments in the cloud.DIV can detect the integrity of the whole architecture stack from the cloud servers up to the VM OS by extending the current trusted chain into virtual machine's architecture stack.DIV introduces a trusted third party(TTP) to collect the integrity information and detect remotely the integrity violations on VMs periodically to avoid the heavy involvement of cloud tenants and unnecessary information leakage of the cloud providers.To evaluate the effectiveness and efficiency of DIV framework,a prototype on KVM/QEMU is implemented,and extensive analysis and experimental evaluation are performed.Experimental results show that the DIV can efficiently validate the integrity of files and loaded programs in real-time,with minor performance overhead.