Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of net...Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding(VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.展开更多
The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SD...The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.展开更多
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329104the National Natural Science Foundation of China under Grants 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding(VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.
文摘The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.