MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了...MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了一种能够适用于任意阵列结构的二维DOA快速估计算法,即变换域MUSIC(transformed do-main-MUSIC,TD-MUSIC)算法.理论分析和仿真实验表明:该算法不但将空间谱峰搜索的范围减小一半而且具有更低维度的噪声子空间,因而其计算量远小于MUSIC算法.同时,新算法具有比MUSIC更高的空间分辨率.展开更多
文摘MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了一种能够适用于任意阵列结构的二维DOA快速估计算法,即变换域MUSIC(transformed do-main-MUSIC,TD-MUSIC)算法.理论分析和仿真实验表明:该算法不但将空间谱峰搜索的范围减小一半而且具有更低维度的噪声子空间,因而其计算量远小于MUSIC算法.同时,新算法具有比MUSIC更高的空间分辨率.