期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Studies on quasi-Newton methods in timedomain multiscale full waveform inversion
1
作者 Dai Meng-Xue Zhang Hua Tian Xiao 《Applied Geophysics》 SCIE CSCD 2022年第2期221-231,307,308,共13页
The time-domain multiscale full waveform inversion(FWI)mitigates the influence of the local minima problem in nonlinear inversion via sequential inversion using different frequency components of seismic data.The quasi... The time-domain multiscale full waveform inversion(FWI)mitigates the influence of the local minima problem in nonlinear inversion via sequential inversion using different frequency components of seismic data.The quasi-Newton methods avoid direct computation of the inverse Hessian matrix,which reduces the amount of computation and storage requirement.A combination of the two methods can improve inversion accuracy and efficiency.However,the quasi-Newton methods in time-domain multiscale FWI still cannot completely solve the problem where the inversion is trapped in local minima.We first analyze the reasons why the quasi-Newton Davidon–Fletcher–Powell and Broyden–Fletcher–Goldfarb–Shanno methods likely fall into the local minima using numerical experiments.During seismic-wave propagation,the amplitude decreases with the geometric diffusion,resulting in the concentration of the gradient of the velocity model in the shallow part,and the deep velocity cannot be corrected.Thus,the inversion falls into the local minima.To solve this problem,we introduce a virtual-source precondition to remove the influence of geometric diffusion.Thus,the model velocities in the deep and shallow parts can be simultaneously completely corrected,and the inversion can more stably converge to the global minimum.After the virtual-source precondition is implemented,the problem in which the quasi-Newton methods likely fall into the local minima is solved.However,problems remain,such as incorrect search direction after a certain number of iterations and failure of the objective function to further decrease.Therefore,we further modify the process of timedomain multiscale FWI based on virtual-source preconditioned quasi-Newton methods by resetting the inverse of the approximate Hessian matrix.Thus,the validity of the search direction of the quasi-Newton methods is guaranteed.Numerical tests show that the modified quasi-Newton methods can obtain more reasonable inversion results,and they converge faster and entail lesser computational resources than the gradient method. 展开更多
关键词 Full waveform inversion Multiscale QUASI-NEWTON Virtual-source precondition Convergence rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部