Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map ...Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map a virtual network to the physical substrate while guaranteeing the survivability in the event of failures, is extremely important. In this paper, we present an efficient virtual network mapping approach using optimal backup topology to survive a single link failure with less resource consumption. Firstly, according to whether the path splitting is supported by virtual networks, we propose the OBT-I and OBT-II algorithms respectively to generate an optimal backup topology which minimizes the total amount of bandwidth constraints. Secondly, we propose a Virtual Network Mapping algorithm with coordinated Primary and Backup Topology (VNM-PBT) to make the best of the substrate network resource. The simulation experiments show that our proposed approach can reduce the average resource consumption and execution time cost, while improving the request acceptance ratio of VNs.展开更多
The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be def...The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.展开更多
基金This research was sponsored by the National Basic Research Program (973 program) of China (2012CB315901, 2013C8329104), the National Natural Science Foundation of China (61372121, 61309020), and the National High-Tech Research and Development Program (863 Program) of Chi- na (2011AA01A103, 201 1AA01A101, 2013AA013505).
文摘Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map a virtual network to the physical substrate while guaranteeing the survivability in the event of failures, is extremely important. In this paper, we present an efficient virtual network mapping approach using optimal backup topology to survive a single link failure with less resource consumption. Firstly, according to whether the path splitting is supported by virtual networks, we propose the OBT-I and OBT-II algorithms respectively to generate an optimal backup topology which minimizes the total amount of bandwidth constraints. Secondly, we propose a Virtual Network Mapping algorithm with coordinated Primary and Backup Topology (VNM-PBT) to make the best of the substrate network resource. The simulation experiments show that our proposed approach can reduce the average resource consumption and execution time cost, while improving the request acceptance ratio of VNs.
文摘The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.