Nowadays, the main communication object of Internet is human-human. But it is foreseeable that in the near future any object will have a unique identification and can be addressed and con- nected. The Internet will ex...Nowadays, the main communication object of Internet is human-human. But it is foreseeable that in the near future any object will have a unique identification and can be addressed and con- nected. The Internet will expand to the Internet of Things. IPv6 is the cornerstone of the Internet of Things. In this paper, we investigate a fast active worm, referred to as topological worm, which can propagate twice to more than three times faster tl^an a traditional scan-based worm. Topological worm spreads over AS-level network topology, making traditional epidemic models invalid for modeling the propagation of it. For this reason, we study topological worm propagation relying on simulations. First, we propose a new complex weighted network mod- el, which represents the real IPv6 AS-level network topology. And then, a new worm propagation model based on the weighted network model is constructed, which descries the topological worm propagation over AS-level network topology. The simulation results verify the topological worm model and demonstrate the effect of parameters on the propagation.展开更多
An inefficient cellular immune response likely leads to chronic hepatitis C virus (HCV) infection. Resolution of chronic HCV infection in the absence of treatment is a rare occurrence. We report the case of a 39-year ...An inefficient cellular immune response likely leads to chronic hepatitis C virus (HCV) infection. Resolution of chronic HCV infection in the absence of treatment is a rare occurrence. We report the case of a 39-year old white male with a 17-year history of chronic HCV infection, who eradicated HCV following a serious illness due to co-infection with Babesia (babesiosis), Borriela Borgdorferi (Lyme disease) and Ehrlichia (human granulocytic ehrlichiosis). We hypothesize that the cellular immune response mounted by this patient in response to his infection with all three agents but in particular Babesia was suffi cient to eradicate HCV.展开更多
Insect parasitoids and baculoviruses play important roles in the natural and strategic biological control of insects. The two parasites are frequent competitors within common hosts and much research has focused on the...Insect parasitoids and baculoviruses play important roles in the natural and strategic biological control of insects. The two parasites are frequent competitors within common hosts and much research has focused on the negative impact that baculoviral host infections have on parasitoids. This review summarizes the impacts that parasitoids may have on the virulence and spread of lepidopteran baculoviruses. By changing host behavior and development, parasitoids have been shown to decrease baculovirus virulence and productivity within parasitized baculovirus-susceptible hosts; however, studies of the tools used by hymenopteran parasitoids to overcome their hosts'immune systems, suggest that parasitoids may, in some cases, facilitate baculoviral infections in less susceptible hosts. Laboratory and field research have demonstrated that parasitoids can mechanically transmit baculoviruses between insects, and in this way, increase the efficacy of the viruses. Instances of new, more virulent isolates of baculoviruses have been recorded from specifically parasitoid-targeted hosts suggesting other possible benefits from the transmission or activation of baculoviruses by parasitoids.展开更多
基金supported by the Ministry of Education Research Project for Returned Talents after Studying Abroadthe Ministry of Education Project of Science and Technology Basic Resource Data Platform(No.507001)+1 种基金International Scientific and Technological Cooperation Program(S2010GR0902)Chinese Universities Scientific Fund(2009RC0502)
文摘Nowadays, the main communication object of Internet is human-human. But it is foreseeable that in the near future any object will have a unique identification and can be addressed and con- nected. The Internet will expand to the Internet of Things. IPv6 is the cornerstone of the Internet of Things. In this paper, we investigate a fast active worm, referred to as topological worm, which can propagate twice to more than three times faster tl^an a traditional scan-based worm. Topological worm spreads over AS-level network topology, making traditional epidemic models invalid for modeling the propagation of it. For this reason, we study topological worm propagation relying on simulations. First, we propose a new complex weighted network mod- el, which represents the real IPv6 AS-level network topology. And then, a new worm propagation model based on the weighted network model is constructed, which descries the topological worm propagation over AS-level network topology. The simulation results verify the topological worm model and demonstrate the effect of parameters on the propagation.
文摘An inefficient cellular immune response likely leads to chronic hepatitis C virus (HCV) infection. Resolution of chronic HCV infection in the absence of treatment is a rare occurrence. We report the case of a 39-year old white male with a 17-year history of chronic HCV infection, who eradicated HCV following a serious illness due to co-infection with Babesia (babesiosis), Borriela Borgdorferi (Lyme disease) and Ehrlichia (human granulocytic ehrlichiosis). We hypothesize that the cellular immune response mounted by this patient in response to his infection with all three agents but in particular Babesia was suffi cient to eradicate HCV.
文摘Insect parasitoids and baculoviruses play important roles in the natural and strategic biological control of insects. The two parasites are frequent competitors within common hosts and much research has focused on the negative impact that baculoviral host infections have on parasitoids. This review summarizes the impacts that parasitoids may have on the virulence and spread of lepidopteran baculoviruses. By changing host behavior and development, parasitoids have been shown to decrease baculovirus virulence and productivity within parasitized baculovirus-susceptible hosts; however, studies of the tools used by hymenopteran parasitoids to overcome their hosts'immune systems, suggest that parasitoids may, in some cases, facilitate baculoviral infections in less susceptible hosts. Laboratory and field research have demonstrated that parasitoids can mechanically transmit baculoviruses between insects, and in this way, increase the efficacy of the viruses. Instances of new, more virulent isolates of baculoviruses have been recorded from specifically parasitoid-targeted hosts suggesting other possible benefits from the transmission or activation of baculoviruses by parasitoids.