Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh...Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh etchant in one or two stage,when phase ratio(O/A)was 2/1,and 80% Lix 54-100 was used as organic phase.展开更多
Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray s...Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). It is indicated that chloride ions in sweat solution accelerate the anodic active dissolution of brass, which is the main reason of pitting corrosion and dezincification corrosion. Meanwhile, lactic acid and ammonia water also promote the anode reaction. The corrosion products on the surface are mainly composed of basic copper chloride, cuprous oxide, the complex consisting of urea in association with copper, and few lactate ion. The kinetics of pitting corrosion development obeys the following equation of J0=0.3735(t+185.93)^-1/2, and the process is controlled by dissolution of salt deposited on pit surface.展开更多
In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching proc...In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.展开更多
This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current te...This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.展开更多
The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with...The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with equilibrium extraction constant.The influence of equilibration time,extractant concentration and phase ratio on the extraction of copper was studied at(298±0.5) K.For the spent etching solutions containing 112.98 g/L Cu,6 mol/L NH3 and 1 mol/L NH4+,the optimal solvent extraction condition of copper was obtained in one-stage solvent extraction at phase ratio of 5:4 with 40% HR in sulphonated kerosene for 5 min.The copper concentration in the raffinate decreased to 63.24 g/L and raffinate can be favorably recycled to the etching solution.The stripping studies were carried out with the simulated copper spent electrolyte containing 30 g/L Cu and 180 g/L H2SO4.The stripping ratio is 98.27% from the loaded organic phase after one-stage stripping at phase ratio of 1:2 at(298±0.5) K.展开更多
The atmospheric corrosion behavior of pure copper exposed for three years in Turpan, China, which is a typical hot and dry atmosphere environment, was investigated using mass-loss tests, morphology observations, com...The atmospheric corrosion behavior of pure copper exposed for three years in Turpan, China, which is a typical hot and dry atmosphere environment, was investigated using mass-loss tests, morphology observations, composition analyses, and electrochemical techniques. The results indicated that the annual corrosion rate of pure copper was approximately 2.90 μm/a. An uneven distribution of corrosion products was observed by scanning electron microscopy; this uneven distribution was attributed to the dehydration process during wet–dry and cold–hot cycles, and the compositions mainly consisted of cuprite (Cu2O) and atacamite (Cu2Cl(OH)3). Electrochemical measurements showed that deposits on copper improved its resistance to corrosion and the protectiveness decreased with increasing temperature. On the other hand, results obtained using the scanning vibrating electrode technique showed that the porous and uneven structure of the deposit layer generated a spatial separation of cathodic and anodic reaction sites, which accelerated the corrosion process in wet and rainy weather.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
文摘Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh etchant in one or two stage,when phase ratio(O/A)was 2/1,and 80% Lix 54-100 was used as organic phase.
基金Project(21276036)supported by the National Natural Science Foundation of ChinaProject(2009AA05Z120)supported by the National High-tech Research and Development Program of China+1 种基金Project(2014025018)supported by the Liaoning Provincial Natural Science Foundation of ChinaProject(3132014323)supported by the Fundamental Research Funds for the Central Universities,China
文摘Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). It is indicated that chloride ions in sweat solution accelerate the anodic active dissolution of brass, which is the main reason of pitting corrosion and dezincification corrosion. Meanwhile, lactic acid and ammonia water also promote the anode reaction. The corrosion products on the surface are mainly composed of basic copper chloride, cuprous oxide, the complex consisting of urea in association with copper, and few lactate ion. The kinetics of pitting corrosion development obeys the following equation of J0=0.3735(t+185.93)^-1/2, and the process is controlled by dissolution of salt deposited on pit surface.
基金Project (2011A090200123) supported by Industry-Universities-Research Cooperation Project of Guangdong Province and Ministry of Education of ChinaProject (111gpy06) supported by Fundamental Research Funds for the Central Universities,ChinaProject (101055807) supported by the Innovative Experiment Plan Project for College Students of Sun Yat-sen University,China
文摘In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.
文摘This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.
基金Project (2007CB613601) supported by the National Basic Research Program of China
文摘The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with equilibrium extraction constant.The influence of equilibration time,extractant concentration and phase ratio on the extraction of copper was studied at(298±0.5) K.For the spent etching solutions containing 112.98 g/L Cu,6 mol/L NH3 and 1 mol/L NH4+,the optimal solvent extraction condition of copper was obtained in one-stage solvent extraction at phase ratio of 5:4 with 40% HR in sulphonated kerosene for 5 min.The copper concentration in the raffinate decreased to 63.24 g/L and raffinate can be favorably recycled to the etching solution.The stripping studies were carried out with the simulated copper spent electrolyte containing 30 g/L Cu and 180 g/L H2SO4.The stripping ratio is 98.27% from the loaded organic phase after one-stage stripping at phase ratio of 1:2 at(298±0.5) K.
基金Project(51222106)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-14-011C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014CB643300)supported by the National Basic Research Program of China
文摘The atmospheric corrosion behavior of pure copper exposed for three years in Turpan, China, which is a typical hot and dry atmosphere environment, was investigated using mass-loss tests, morphology observations, composition analyses, and electrochemical techniques. The results indicated that the annual corrosion rate of pure copper was approximately 2.90 μm/a. An uneven distribution of corrosion products was observed by scanning electron microscopy; this uneven distribution was attributed to the dehydration process during wet–dry and cold–hot cycles, and the compositions mainly consisted of cuprite (Cu2O) and atacamite (Cu2Cl(OH)3). Electrochemical measurements showed that deposits on copper improved its resistance to corrosion and the protectiveness decreased with increasing temperature. On the other hand, results obtained using the scanning vibrating electrode technique showed that the porous and uneven structure of the deposit layer generated a spatial separation of cathodic and anodic reaction sites, which accelerated the corrosion process in wet and rainy weather.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.