在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境...在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境进行栅格化建模,使用改进的跳点搜索算法生成双向搜索的初始次优路径,为双向蚁群搜索提供初始搜索方向参考.其次,在双向并行蚁群搜索过程中采用改进的转移概率启发函数,该函数在确定下一个转移节点时考虑了避免AGV与障碍物碰撞的因素,同时通过设计信息素共享机制并结合改进的信息素增量及浓度两种融合模型,共享和更新全局信息素浓度,以更好地探索和优化路径,保证双向路径连结.最后,与传统蚁群算法进行实验结果对比,验证了改进算法的全局搜索能力、效率和安全性.展开更多
针对无人靶车路径过程中效率低成本高的问题,构建了无人靶车路径问题(Routing Problem of Un⁃manned Target Vehicle,RPUTV)的混合整数优化模型,该模型以无人靶车行驶路径距离最小化为优化目标。首先,为了提高算法的求解效率和求解质量...针对无人靶车路径过程中效率低成本高的问题,构建了无人靶车路径问题(Routing Problem of Un⁃manned Target Vehicle,RPUTV)的混合整数优化模型,该模型以无人靶车行驶路径距离最小化为优化目标。首先,为了提高算法的求解效率和求解质量,在算法的初始阶段引入贪心算法来构建初始解,同时在蚁群算法中引入了邻域搜索算法组成了混合蚁群算法(Hybrid Ant Colony Algorithm,HACA)来提高算法的局部搜索能力。其次,采用标准数据集来验证算法,同其他求解算法进行对比显示,HACA算法求解RPUTV具有更高效性。展开更多
针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
文摘在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境进行栅格化建模,使用改进的跳点搜索算法生成双向搜索的初始次优路径,为双向蚁群搜索提供初始搜索方向参考.其次,在双向并行蚁群搜索过程中采用改进的转移概率启发函数,该函数在确定下一个转移节点时考虑了避免AGV与障碍物碰撞的因素,同时通过设计信息素共享机制并结合改进的信息素增量及浓度两种融合模型,共享和更新全局信息素浓度,以更好地探索和优化路径,保证双向路径连结.最后,与传统蚁群算法进行实验结果对比,验证了改进算法的全局搜索能力、效率和安全性.
文摘针对无人靶车路径过程中效率低成本高的问题,构建了无人靶车路径问题(Routing Problem of Un⁃manned Target Vehicle,RPUTV)的混合整数优化模型,该模型以无人靶车行驶路径距离最小化为优化目标。首先,为了提高算法的求解效率和求解质量,在算法的初始阶段引入贪心算法来构建初始解,同时在蚁群算法中引入了邻域搜索算法组成了混合蚁群算法(Hybrid Ant Colony Algorithm,HACA)来提高算法的局部搜索能力。其次,采用标准数据集来验证算法,同其他求解算法进行对比显示,HACA算法求解RPUTV具有更高效性。
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。