本文针对电子产品生产过程中的零配件与成品质量控制问题,提出了一种结合蚁群优化算法的数学模型。该模型旨在优化检测策略与生产决策,以达到最小化成本或最大化利润的最优决策。在多种变量、多道工序和复杂决策空间环境下,通过模拟不...本文针对电子产品生产过程中的零配件与成品质量控制问题,提出了一种结合蚁群优化算法的数学模型。该模型旨在优化检测策略与生产决策,以达到最小化成本或最大化利润的最优决策。在多种变量、多道工序和复杂决策空间环境下,通过模拟不同情形,模型提供了详细的决策方案与指标结果,为企业提供了科学的生产管理依据。This paper addresses the issue of quality control for components and finished products in the electronic manufacturing process, proposing a mathematical model that integrates the Ant Colony Optimization (ACO) algorithm. The model aims to optimize inspection strategies and production decisions to achieve the optimal solution of minimizing costs or maximizing profits. In a multi-variable, multi-process, and complex decision-making environment, the model simulates various scenarios and provides detailed decision-making plans and performance indicators. This offers enterprises a scientific basis for production management.展开更多
文摘本文针对电子产品生产过程中的零配件与成品质量控制问题,提出了一种结合蚁群优化算法的数学模型。该模型旨在优化检测策略与生产决策,以达到最小化成本或最大化利润的最优决策。在多种变量、多道工序和复杂决策空间环境下,通过模拟不同情形,模型提供了详细的决策方案与指标结果,为企业提供了科学的生产管理依据。This paper addresses the issue of quality control for components and finished products in the electronic manufacturing process, proposing a mathematical model that integrates the Ant Colony Optimization (ACO) algorithm. The model aims to optimize inspection strategies and production decisions to achieve the optimal solution of minimizing costs or maximizing profits. In a multi-variable, multi-process, and complex decision-making environment, the model simulates various scenarios and provides detailed decision-making plans and performance indicators. This offers enterprises a scientific basis for production management.