The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the &...The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.展开更多
A hybrid method is proposed to properly identify multiple damages for plate structures in this work. In the stage of damage localization, singular value decomposition (SVD) is applied to reveal singularities in moda...A hybrid method is proposed to properly identify multiple damages for plate structures in this work. In the stage of damage localization, singular value decomposition (SVD) is applied to reveal singularities in modal shapes, and hence to detect the damage locations. In the stage of damage quantification, based on the detected location information ant colony optimization (ACO) algorithm is introduced to estimate damage severity by searching for damage evaluation database, which reveals the relationship between the natural frequencies and the damage severity. The modal shapes and the natural frequencies required in damage localization and quantification are obtained via the wavelet finite element method. The numerical simulation and experimental investigation are carried out to test the performance of the hybrid method for free aluminum plates with multiple damages. And the results indicate that the proposed method is effective to identify multiple damages of plate structures with reasonable precision.展开更多
文摘The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.51475356)the National Key Basic Research Program of China(Grant No.2015CB057400)the Wenzhou Technologies R&D Program of China(Grant No.G20140047)
文摘A hybrid method is proposed to properly identify multiple damages for plate structures in this work. In the stage of damage localization, singular value decomposition (SVD) is applied to reveal singularities in modal shapes, and hence to detect the damage locations. In the stage of damage quantification, based on the detected location information ant colony optimization (ACO) algorithm is introduced to estimate damage severity by searching for damage evaluation database, which reveals the relationship between the natural frequencies and the damage severity. The modal shapes and the natural frequencies required in damage localization and quantification are obtained via the wavelet finite element method. The numerical simulation and experimental investigation are carried out to test the performance of the hybrid method for free aluminum plates with multiple damages. And the results indicate that the proposed method is effective to identify multiple damages of plate structures with reasonable precision.