利用热塑挤压技术将低值鱼肉挤压重组,以重组产物为基料进行模拟食品研发。从基料复水、入味方法、干燥条件、山梨糖醇和蔗糖添加量等方面来确定中间水分模拟肉类食品工艺条件。试验结果表明,基料经100℃热水复水15 m in,选用佃煮法入...利用热塑挤压技术将低值鱼肉挤压重组,以重组产物为基料进行模拟食品研发。从基料复水、入味方法、干燥条件、山梨糖醇和蔗糖添加量等方面来确定中间水分模拟肉类食品工艺条件。试验结果表明,基料经100℃热水复水15 m in,选用佃煮法入味后在80℃条件下干燥3 h,添加山梨糖醇5%,蔗糖12%时可制得弹性好、风味优良的中间水分模拟肉类食品。展开更多
豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性...豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性进行系统的评价基础上,使用挤压技术制备组织化蛋白,并测定其质构特性及色泽。结果表明:不同豆类分离蛋白的基本成分、功能特性、氨基酸组成以及流变学特性存在着显著性差异(P<0.05),PPI的蛋白质含量、持水性、乳化性以及必需氨基酸含量均高于SPI、CPI以及FPI。且PPI是易溶解的豆类蛋白,其在酸性(pH=2)和碱性(pH=12)条件下有着较好的溶解度。PPI挤压得到的组织化蛋白的硬度(3699.53 g)、弹性(0.94)、咀嚼性(2616.18 g)均大于其他3种豆类分离蛋白。PPI挤压后的组织化蛋白表面更加明亮光滑,有利于后续产品的加工赋色。CPI和SPI挤压后的组织化蛋白颜色较深。各类豆类组织化蛋白呈现出截然不同的二级结构,其中在PPI中,β-折叠质量分数最高(59%),而在CPI中以α-螺旋为主(36.7%),与此同时,CPI中β-转角占18.4%为主要的构型。其中β-折叠在豆类组织化蛋白形成中发挥着关键的作用。通过对豆类分离蛋白原料特性与组织化蛋白品质相关性分析发现,原料特性与其挤压后的组织化蛋白品质之间有一定的联系,且呈显著性正相关。展开更多
文摘利用热塑挤压技术将低值鱼肉挤压重组,以重组产物为基料进行模拟食品研发。从基料复水、入味方法、干燥条件、山梨糖醇和蔗糖添加量等方面来确定中间水分模拟肉类食品工艺条件。试验结果表明,基料经100℃热水复水15 m in,选用佃煮法入味后在80℃条件下干燥3 h,添加山梨糖醇5%,蔗糖12%时可制得弹性好、风味优良的中间水分模拟肉类食品。
文摘豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性进行系统的评价基础上,使用挤压技术制备组织化蛋白,并测定其质构特性及色泽。结果表明:不同豆类分离蛋白的基本成分、功能特性、氨基酸组成以及流变学特性存在着显著性差异(P<0.05),PPI的蛋白质含量、持水性、乳化性以及必需氨基酸含量均高于SPI、CPI以及FPI。且PPI是易溶解的豆类蛋白,其在酸性(pH=2)和碱性(pH=12)条件下有着较好的溶解度。PPI挤压得到的组织化蛋白的硬度(3699.53 g)、弹性(0.94)、咀嚼性(2616.18 g)均大于其他3种豆类分离蛋白。PPI挤压后的组织化蛋白表面更加明亮光滑,有利于后续产品的加工赋色。CPI和SPI挤压后的组织化蛋白颜色较深。各类豆类组织化蛋白呈现出截然不同的二级结构,其中在PPI中,β-折叠质量分数最高(59%),而在CPI中以α-螺旋为主(36.7%),与此同时,CPI中β-转角占18.4%为主要的构型。其中β-折叠在豆类组织化蛋白形成中发挥着关键的作用。通过对豆类分离蛋白原料特性与组织化蛋白品质相关性分析发现,原料特性与其挤压后的组织化蛋白品质之间有一定的联系,且呈显著性正相关。