Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin ...Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin from porcine blood. Adsorption isotherms were studied under different pH conditions. The adsorbent with 2-mercapto-methyl-imidazole as the ligand showed reasonable adsorption capacity(43.60 mg·g^(-1)gel)with great selectivity and it also showed the best elution performance in chromatographic studies. A multi-pH step elution process was proposed for the 2-mercapto-methyl-imidazole adsorbent, and the results showed that high immunoglobulin purity(94.3%) and a yield of 9.8 mg·(ml plasma)^(-1) could be achieved under the optimal condition of loading(pH 5.0)–pre-elution(pH 7.0)–elution(pH 3.8). Moreover, molecular simulation was employed to help in analyzing the binding mechanism between the ligands and immunoglobulin, and the results showed that both 2-mercapto-benzimidazole and 2-mercapto-methyl-imidazole ligands were docked on the same pocket(around TYR319 and LEU309) of the Fc fragment of immunoglobulin, with 2-mercaptobenzimidazole showing stronger binding interactions.展开更多
Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In...Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In order to disrupt this interaction,the strategy to target VHL binding site using a hydroxyproline-like(pro-like)small molecule has been reported.In this study,we focused on the inhibition mechanism between the pro-like inhibitors and the VHL protein,which were investigated via molecular dynamics simulations and binding free energy calculations.It was found that pro-like inhibitors showed a strong binding affinity toward VHL.Binding free energy calculations and free energy decompositions suggested that the modification of various regions of pro-like inhibitors may provide useful information for future drug design.展开更多
Androgen receptor (AR) is able to promote stress-induced cell death independently of its transcription activity in androgen-independent prostate cancer cells. Yet, the underlying mechanism is incompletely understood...Androgen receptor (AR) is able to promote stress-induced cell death independently of its transcription activity in androgen-independent prostate cancer cells. Yet, the underlying mechanism is incompletely understood. Here, we report that stress-induced proteasomal degradation of AR contributes to its pro-death activity. Upon exposure to ul- traviolet fight and staurosporine, AR underwent proteasomal degradation. Blockade of AR degradation significantly suppressed stress-induced apoptosis in androgen-independent prostate cancer cells. Ectopic expression of the AR N-terminal (AR-N) domain, which lacks DNA- and ligand-binding abilities, led to cell death without any additional death stimuli. Truncation analysis revealed that AR-N domain contains several sub-domains that regulate the pro- death activity of AR, specifically the first 105 amino acids, which function as a minimal pro-death domain acting upstream of caspases. The pro-apoptotic activity of AR N-terminal fragments was suppressed by ectopic expression of Bcl-2 or selected caspase inhibitors. Thus, our results reveal a novel mechanism by which AR promotes stressinduced cell death in androgen-independent prostate cancer cells.展开更多
Recent studies have suggested an involvement of processing pathways for the initiation of cellular responses induced by topoisomerase-targeting drugs. Here, we showed that cellular exposure to camptothecin (CPT) ind...Recent studies have suggested an involvement of processing pathways for the initiation of cellular responses induced by topoisomerase-targeting drugs. Here, we showed that cellular exposure to camptothecin (CPT) induced formation of topoisomerase I cleavable complex (TOPlcc), degradation of TOP1 and activation of DNA damage responses (DDR). Transcription and proteasome-dependent proteolysis, but not replication, were involved in CPTo indneed TOPl degradation, while none of above three processing activities affected TOPlcc formation. Replication- and transcription-initiated proeessing (RIP and TIP) of TOPlee were identified as two independent pathways, which contribute distinctly to various CPT-activated DDR. Specifically, in cycling cells, RIP-processed TOPlec triggered the CPT-induced RPA pbosphorylation. At higher CPT dosages, the TIP pathway is required for other DDR activation, including ATM, p53 and Chkl/2 phosphorylation. The TIP pathway was further demonstrated to be S-phase independent by using three nonreplicating cell models. Furthermore, the effect of proteasome inhibitors mimicked that of transcription inhibition on the CPT-induced activation of DDR, suggesting the involvement of proteasome in the TIP pathway. Interestingly, the TIP pathway was important for TOPlcc-activated, but not ionization radiationactivated ATM, p53 and Chk2 phosphorylation. We have also found that pharmacological interferences of TIP and RIP pathways distinctively modulated the CPT-induced cell killing with treatments at low and high dosages, respec- tively. Together, our results support that both RIP and TIP pathways of TOPlcc are required for the activation of CPT-induced DDR and cytotoxicity.展开更多
The most fundamental property of biomarkers is change.But changes are hard to maintain in plasma since it is strictly controlled by homeostatic mechanisms of the body.There is no homeostatic mechanism for urine.Beside...The most fundamental property of biomarkers is change.But changes are hard to maintain in plasma since it is strictly controlled by homeostatic mechanisms of the body.There is no homeostatic mechanism for urine.Besides,urine is partly a filtration of blood,and systematic information can be reflected in urine.We hypothesize that change of blood can be reflected in urine more sensitively.Here we introduce the interference into the blood by two anticoagulants heparin or argatroban.Plasma and urine proteins were profiled by LC-MS/MS and then validated by Western blot in totally six SD female rats before and after the drug treatments.In argatroban treated group,with exactly the same experimental procedure and the same cutoff value for both plasma and urine proteins,62 proteins changed in urine,only one of which changed in plasma.In heparin treated group,27 proteins changed in urine but only three other proteins changed in plasma.Both LC-MS/MS and Western blot analyses demonstrated drug-induced increases in transferrin and hemopexin levels in urine but not in plasma.Our data indicates that urine may serve as a source for more sensitive detection of protein biomarkers than plasma.展开更多
基金Supported by the National Natural Science Foundation of China(21276228 and21476198)the Natural Science Foundation of Zhejiang Province(LR12B06003)the Fundamental Research Funds for the Central Universities(2013QNA4032)
文摘Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin from porcine blood. Adsorption isotherms were studied under different pH conditions. The adsorbent with 2-mercapto-methyl-imidazole as the ligand showed reasonable adsorption capacity(43.60 mg·g^(-1)gel)with great selectivity and it also showed the best elution performance in chromatographic studies. A multi-pH step elution process was proposed for the 2-mercapto-methyl-imidazole adsorbent, and the results showed that high immunoglobulin purity(94.3%) and a yield of 9.8 mg·(ml plasma)^(-1) could be achieved under the optimal condition of loading(pH 5.0)–pre-elution(pH 7.0)–elution(pH 3.8). Moreover, molecular simulation was employed to help in analyzing the binding mechanism between the ligands and immunoglobulin, and the results showed that both 2-mercapto-benzimidazole and 2-mercapto-methyl-imidazole ligands were docked on the same pocket(around TYR319 and LEU309) of the Fc fragment of immunoglobulin, with 2-mercaptobenzimidazole showing stronger binding interactions.
基金supported by the National Natural Science Foundation of China(No.21973064)the Post-Doctor Research Project,West China Hospital,Sichuan University(No.2021HXBH017)。
文摘Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In order to disrupt this interaction,the strategy to target VHL binding site using a hydroxyproline-like(pro-like)small molecule has been reported.In this study,we focused on the inhibition mechanism between the pro-like inhibitors and the VHL protein,which were investigated via molecular dynamics simulations and binding free energy calculations.It was found that pro-like inhibitors showed a strong binding affinity toward VHL.Binding free energy calculations and free energy decompositions suggested that the modification of various regions of pro-like inhibitors may provide useful information for future drug design.
文摘Androgen receptor (AR) is able to promote stress-induced cell death independently of its transcription activity in androgen-independent prostate cancer cells. Yet, the underlying mechanism is incompletely understood. Here, we report that stress-induced proteasomal degradation of AR contributes to its pro-death activity. Upon exposure to ul- traviolet fight and staurosporine, AR underwent proteasomal degradation. Blockade of AR degradation significantly suppressed stress-induced apoptosis in androgen-independent prostate cancer cells. Ectopic expression of the AR N-terminal (AR-N) domain, which lacks DNA- and ligand-binding abilities, led to cell death without any additional death stimuli. Truncation analysis revealed that AR-N domain contains several sub-domains that regulate the pro- death activity of AR, specifically the first 105 amino acids, which function as a minimal pro-death domain acting upstream of caspases. The pro-apoptotic activity of AR N-terminal fragments was suppressed by ectopic expression of Bcl-2 or selected caspase inhibitors. Thus, our results reveal a novel mechanism by which AR promotes stressinduced cell death in androgen-independent prostate cancer cells.
文摘Recent studies have suggested an involvement of processing pathways for the initiation of cellular responses induced by topoisomerase-targeting drugs. Here, we showed that cellular exposure to camptothecin (CPT) induced formation of topoisomerase I cleavable complex (TOPlcc), degradation of TOP1 and activation of DNA damage responses (DDR). Transcription and proteasome-dependent proteolysis, but not replication, were involved in CPTo indneed TOPl degradation, while none of above three processing activities affected TOPlcc formation. Replication- and transcription-initiated proeessing (RIP and TIP) of TOPlee were identified as two independent pathways, which contribute distinctly to various CPT-activated DDR. Specifically, in cycling cells, RIP-processed TOPlec triggered the CPT-induced RPA pbosphorylation. At higher CPT dosages, the TIP pathway is required for other DDR activation, including ATM, p53 and Chkl/2 phosphorylation. The TIP pathway was further demonstrated to be S-phase independent by using three nonreplicating cell models. Furthermore, the effect of proteasome inhibitors mimicked that of transcription inhibition on the CPT-induced activation of DDR, suggesting the involvement of proteasome in the TIP pathway. Interestingly, the TIP pathway was important for TOPlcc-activated, but not ionization radiationactivated ATM, p53 and Chk2 phosphorylation. We have also found that pharmacological interferences of TIP and RIP pathways distinctively modulated the CPT-induced cell killing with treatments at low and high dosages, respec- tively. Together, our results support that both RIP and TIP pathways of TOPlcc are required for the activation of CPT-induced DDR and cytotoxicity.
基金supported by the National Basic Research Program of China (2012CB517606,2013CB530805)Expertise-Introduction Project for Disciplinary Innovation of Universities (B08007)+1 种基金National Natural Science Foundation of China (31200614)Beijing Natural Science Foundation (5132028)
文摘The most fundamental property of biomarkers is change.But changes are hard to maintain in plasma since it is strictly controlled by homeostatic mechanisms of the body.There is no homeostatic mechanism for urine.Besides,urine is partly a filtration of blood,and systematic information can be reflected in urine.We hypothesize that change of blood can be reflected in urine more sensitively.Here we introduce the interference into the blood by two anticoagulants heparin or argatroban.Plasma and urine proteins were profiled by LC-MS/MS and then validated by Western blot in totally six SD female rats before and after the drug treatments.In argatroban treated group,with exactly the same experimental procedure and the same cutoff value for both plasma and urine proteins,62 proteins changed in urine,only one of which changed in plasma.In heparin treated group,27 proteins changed in urine but only three other proteins changed in plasma.Both LC-MS/MS and Western blot analyses demonstrated drug-induced increases in transferrin and hemopexin levels in urine but not in plasma.Our data indicates that urine may serve as a source for more sensitive detection of protein biomarkers than plasma.