蛋白质复合体对于研究细胞活动具有重要意义.随着新的生物实验技术的不断出现,产生了大量的蛋白质相互作用网络.通过对蛋白质相互作用网络进行聚类识别蛋白质复合体是当前研究热点.然而,目前大多数蛋白质复合体识别算法的性能不够理想....蛋白质复合体对于研究细胞活动具有重要意义.随着新的生物实验技术的不断出现,产生了大量的蛋白质相互作用网络.通过对蛋白质相互作用网络进行聚类识别蛋白质复合体是当前研究热点.然而,目前大多数蛋白质复合体识别算法的性能不够理想.为此,提出了蛋白质复合体模块度函数(PQ),并在此基础上提出了基于蛋白质复合体模块度函数的模块合并(based on protein complexes modularity function for merging modules,BMM)算法.BMM算法首先识别网络中一些稠密子图作为初始模块,然后依据PQ函数对这些初始模块进行合并,最终得到了质量较高的蛋白质复合体.将识别出的复合体分别与2种已知的蛋白质复合体数据集进行比对,结果表明BMM算法具有很好的识别性能.此外,与其他最新的识别算法相比,BMM算法的识别准确率较高.展开更多
针对加权模块度函数聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模块度函数的加权蛋白质复合物识别算法IWPC-MF(Algorithm for Identifying Weighted Protein...针对加权模块度函数聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模块度函数的加权蛋白质复合物识别算法IWPC-MF(Algorithm for Identifying Weighted Protein Complexes based on Modularity Function)。融合点聚集系数改进边聚集系数,将改进后的边点聚集系数与基因共表达的皮尔逊相关系数结合来构建加权蛋白质网络;基于节点权重选取种子节点,遍历种子的邻居节点,设计节点间的相似度度量和蛋白质附着度来获取初始聚类模块;设计基于紧密度的蛋白质复合物模块度函数来合并初始模块,并最终完成复合物的识别,克服传统的模块度函数无法识别出重叠和规模较小的复合物的缺陷。将IWPC-MF算法应用在DIP数据上进行复合物的识别,实验结果表明IWPC-MF算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。展开更多
文摘蛋白质复合体对于研究细胞活动具有重要意义.随着新的生物实验技术的不断出现,产生了大量的蛋白质相互作用网络.通过对蛋白质相互作用网络进行聚类识别蛋白质复合体是当前研究热点.然而,目前大多数蛋白质复合体识别算法的性能不够理想.为此,提出了蛋白质复合体模块度函数(PQ),并在此基础上提出了基于蛋白质复合体模块度函数的模块合并(based on protein complexes modularity function for merging modules,BMM)算法.BMM算法首先识别网络中一些稠密子图作为初始模块,然后依据PQ函数对这些初始模块进行合并,最终得到了质量较高的蛋白质复合体.将识别出的复合体分别与2种已知的蛋白质复合体数据集进行比对,结果表明BMM算法具有很好的识别性能.此外,与其他最新的识别算法相比,BMM算法的识别准确率较高.
文摘针对加权模块度函数聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模块度函数的加权蛋白质复合物识别算法IWPC-MF(Algorithm for Identifying Weighted Protein Complexes based on Modularity Function)。融合点聚集系数改进边聚集系数,将改进后的边点聚集系数与基因共表达的皮尔逊相关系数结合来构建加权蛋白质网络;基于节点权重选取种子节点,遍历种子的邻居节点,设计节点间的相似度度量和蛋白质附着度来获取初始聚类模块;设计基于紧密度的蛋白质复合物模块度函数来合并初始模块,并最终完成复合物的识别,克服传统的模块度函数无法识别出重叠和规模较小的复合物的缺陷。将IWPC-MF算法应用在DIP数据上进行复合物的识别,实验结果表明IWPC-MF算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。