Integration of pathway and protein-protein interaction(PPI) data can provide more information that could lead to new biological insights. PPIs are usually represented by a simple binary model, whereas pathways are rep...Integration of pathway and protein-protein interaction(PPI) data can provide more information that could lead to new biological insights. PPIs are usually represented by a simple binary model, whereas pathways are represented by more complicated models. We developed a series of rules for transforming protein interactions from pathway to binary model, and the protein interactions from seven pathway databases, including PID, Bio Carta, Reactome, Net Path, INOH, SPIKE and KEGG, were transformed based on these rules. These pathway-derived binary protein interactions were integrated with PPIs from other five PPI databases including HPRD, Int Act, Bio GRID, MINT and DIP, to develop integrated dataset(named Path PPI). More detailed interaction type and modification information on protein interactions can be preserved in Path PPI than other existing datasets. Comparison analysis results indicate that most of the interaction overlaps values(OAB) among these pathway databases were less than 5%, and these databases must be used conjunctively. The Path PPI data was provided at http://proteomeview. hupo.org.cn/Path PPI/Path PPI.html.展开更多
基金supported by the National High Technology Research and Development Program of China(2012AA020201)National Basic Research Program of China(2013CB910802,2010CB912700)+2 种基金International Science&Technology Cooperation Program of China(2014DFB30020)National Natural Science Foundation of China(31000379,31000587,31000591)Chinese State Key Project Specialized for Infectious Diseases(2012ZX10002012-006)
文摘Integration of pathway and protein-protein interaction(PPI) data can provide more information that could lead to new biological insights. PPIs are usually represented by a simple binary model, whereas pathways are represented by more complicated models. We developed a series of rules for transforming protein interactions from pathway to binary model, and the protein interactions from seven pathway databases, including PID, Bio Carta, Reactome, Net Path, INOH, SPIKE and KEGG, were transformed based on these rules. These pathway-derived binary protein interactions were integrated with PPIs from other five PPI databases including HPRD, Int Act, Bio GRID, MINT and DIP, to develop integrated dataset(named Path PPI). More detailed interaction type and modification information on protein interactions can be preserved in Path PPI than other existing datasets. Comparison analysis results indicate that most of the interaction overlaps values(OAB) among these pathway databases were less than 5%, and these databases must be used conjunctively. The Path PPI data was provided at http://proteomeview. hupo.org.cn/Path PPI/Path PPI.html.