Hirudin is the most anticoagulant drug found in nature, but its short serum half-life significantly inhibits its clinical anpplication. The PEGvlation of hirudin, the most promising anticoagulant drug, was performed i...Hirudin is the most anticoagulant drug found in nature, but its short serum half-life significantly inhibits its clinical anpplication. The PEGvlation of hirudin, the most promising anticoagulant drug, was performed in this paper. The optimal reaction conditions for PEG ylated hirudin were investigated, wh.en the PEGylation react, on.wasconducted under 4℃ after 10h, in the borate buffer at pH 8.5 .with the molar ratio 230 : 1 of PEG to hirudin, a higher modification extent was achieved. Finally, the bioactivity of PEGylated hirudin was measured in vitro.Compared with unmodified hirudin, 26% of anti-thrombin activity was retained.展开更多
Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular w...Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.展开更多
Objective To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading frame (ORF) in clinical strains. Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplif...Objective To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading frame (ORF) in clinical strains. Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains. Results LIL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identifies of LIL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleofide mutations were substitutions. The spatial structure and post-translational modification sites of HL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV HL138 sequence variations were not definitely related with different clinical symptoms. Conclusion HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.展开更多
In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membran...In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have previously described the use of an amphipathic polymer (poly(styrene-co-maleic add), SMA) to produce discoidal nanoparticles with a lipid bilayer core containing the embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unencapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA lipid particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer "bracelet" encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of the structure of the SMALP forms the foundation for future development and applications of SMALPs in membrane protein production and analysis.展开更多
文摘Hirudin is the most anticoagulant drug found in nature, but its short serum half-life significantly inhibits its clinical anpplication. The PEGvlation of hirudin, the most promising anticoagulant drug, was performed in this paper. The optimal reaction conditions for PEG ylated hirudin were investigated, wh.en the PEGylation react, on.wasconducted under 4℃ after 10h, in the borate buffer at pH 8.5 .with the molar ratio 230 : 1 of PEG to hirudin, a higher modification extent was achieved. Finally, the bioactivity of PEGylated hirudin was measured in vitro.Compared with unmodified hirudin, 26% of anti-thrombin activity was retained.
基金Supported by the National Natural Science Foundation of China(21476023)
文摘Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.
基金Supported by the National Natural Science Foundation of China (30801254)
文摘Objective To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading frame (ORF) in clinical strains. Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains. Results LIL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identifies of LIL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleofide mutations were substitutions. The spatial structure and post-translational modification sites of HL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV HL138 sequence variations were not definitely related with different clinical symptoms. Conclusion HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.
文摘In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have previously described the use of an amphipathic polymer (poly(styrene-co-maleic add), SMA) to produce discoidal nanoparticles with a lipid bilayer core containing the embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unencapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA lipid particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer "bracelet" encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of the structure of the SMALP forms the foundation for future development and applications of SMALPs in membrane protein production and analysis.