To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was ...To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.展开更多
A novel heatsink based on a multilayer stack of thin metal plates with staggered honeycomb cell microchannels was investigated in this paper. A series of working-parametric tests such as different heat sink pipe diame...A novel heatsink based on a multilayer stack of thin metal plates with staggered honeycomb cell microchannels was investigated in this paper. A series of working-parametric tests such as different heat sink pipe diameter and pumping power were conducted for the microchannel cooling system to determine the heat transfer performance under small flow rate conditions. For the double fluid flow inlets and outlets heatsink design, experimental results showed that more uniform substrate temperature distribution was obtained than the single inlet and outlet ones. It showed that the heatsink design provided a good choice for electronic chips cooling applications.展开更多
基金Project(07018) supported by the College Discipline Innovation Wisdom Plan in China
文摘To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.
文摘A novel heatsink based on a multilayer stack of thin metal plates with staggered honeycomb cell microchannels was investigated in this paper. A series of working-parametric tests such as different heat sink pipe diameter and pumping power were conducted for the microchannel cooling system to determine the heat transfer performance under small flow rate conditions. For the double fluid flow inlets and outlets heatsink design, experimental results showed that more uniform substrate temperature distribution was obtained than the single inlet and outlet ones. It showed that the heatsink design provided a good choice for electronic chips cooling applications.