Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding ...Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.展开更多
In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove vo...In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.展开更多
文摘Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.
基金Projects(51779226,51476144)supported by the National Natural Science Foundation of ChinaProject(2017C31025)supported by Zhejiang Province Department Public Welfare Industrial Projects,China+1 种基金Project(2016M601736)supported by Postdoctoral Science Foundation of ChinaProject(1601028C)supported by Postdoctoral Research Funding Plan in Jiangsu Province,China
文摘In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.