This article refers to major measures for reducing olefin content of automotive gasoline and the effect after adoption of these measures. The key for reducing olefin content in China's automotive gasoline pool is ...This article refers to major measures for reducing olefin content of automotive gasoline and the effect after adoption of these measures. The key for reducing olefin content in China's automotive gasoline pool is to reduce the olefin content of FCC naphtha. The domestic refiners apply the olefinreducing catalyst to decrease the olefin content of FCC gasoline as a convenient and cheap means to meet the national standard for automotive gasoline at the present phase. Furthermore, the novel domestic FCC reaction processes, such as the MIP, MGD, FDFCC and other processes can also apparently reduce olefin content in FCC gasoline. In order to further reduce the olefin content in gasoline to meet more stringent standard for automotive gasoline, Chinese refiners should optimize the processing scheme while aggressively disseminating hydrogenation process along with development of catalytic reforming,alkylation, etherification and other processes to completely change the simplistic composition of domestic gasoline pool.展开更多
PetroChina Jinxi Petrochemical Branch Company has applied the MIP technology in its RFCC unit to maximize the light distillate while using the paraffinic gas oil blended with resid and the coker gasoil as the feedstoc...PetroChina Jinxi Petrochemical Branch Company has applied the MIP technology in its RFCC unit to maximize the light distillate while using the paraffinic gas oil blended with resid and the coker gasoil as the feedstocks. The outcome of the unit operating according to the MIP mode has revealed that the olefin content in the stabilized gasoline could be reduced to less than 35 % with its research octane number equivalent to and its motor octane number slightly higher than the octane rating of the FCC naphtha obtained by the former operational mode of the RFCC unit, and the diesel yield could reach over 30 m%. The total liquid yield (LPG+gasoline+diesel) of the unit operating according to the MIP mode was by over 1.5 percentage points higher than that achieved in the former RFCC unit.展开更多
In order to reduce the coke yield and increase the economic benefits of FCC unit under the prerequisites of securing the olefin content of gasoline in compliance with the requirement, SINOPEC Luoyang Branch Company ap...In order to reduce the coke yield and increase the economic benefits of FCC unit under the prerequisites of securing the olefin content of gasoline in compliance with the requirement, SINOPEC Luoyang Branch Company applied in the period from July through October 2004 the new generation X-62 catalyst (FlexTec-LOL1) developed by the Engelhard Corporation of USA to improve the heavy oil conversion and to reduce coke make. The result of tests has shown that indicators on reducing the unit catalyst consumption,amplitude on reduction of non-ideal products (coke+oil slurry+dry gas) yield, and amplitude on reduction of coke yield were comparatively satisfactory.展开更多
The research and development of the CGP-2 catalyst, which was used in the MIP-CGP process for reducing the olefin and sulfur contents of FCC naphtha and enhancing the propylene yield, were introduced. A specific type ...The research and development of the CGP-2 catalyst, which was used in the MIP-CGP process for reducing the olefin and sulfur contents of FCC naphtha and enhancing the propylene yield, were introduced. A specific type of metal compound was added into the matrix to provide active centers for reactions including catalytic conversion and selective adsorption of sulfur containing compounds. The CGP-2 catalyst possessed excellent hydrothermal stability to meet the requirements of the 2rid reaction zone of the MIP-CGP process. The commercial test of the said catalyst at the SINOPEC Cangzhou refinery showed that in comparison with the base case (using the CGP-1Z catalyst) the CGP-2 catalyst could reduce the sulfur content of FCC naphtha by 30.32% and increase the propylene yield along with good coke selectivity. Thus, the naphtha produced by the MIP-CGP process at the Cangzhou refinery can meet the new gasoline standard enforced in July 2005.展开更多
HGY-2000R catalyst developed by Research Institute of Petroleum Processing, SINOPEC wastested in the RFCC unit, Ulsan complex, SK Corporation, Korea from July to August 2002. The primaryresults of commercial test show...HGY-2000R catalyst developed by Research Institute of Petroleum Processing, SINOPEC wastested in the RFCC unit, Ulsan complex, SK Corporation, Korea from July to August 2002. The primaryresults of commercial test show that it has good performance of higher activity, good hydrothermal stability,higher residue cracking ability, good coke selectivity and good fluidization properties as well as maximizinggasoline yield with a lower olefin content.展开更多
Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of dis...Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.展开更多
文摘This article refers to major measures for reducing olefin content of automotive gasoline and the effect after adoption of these measures. The key for reducing olefin content in China's automotive gasoline pool is to reduce the olefin content of FCC naphtha. The domestic refiners apply the olefinreducing catalyst to decrease the olefin content of FCC gasoline as a convenient and cheap means to meet the national standard for automotive gasoline at the present phase. Furthermore, the novel domestic FCC reaction processes, such as the MIP, MGD, FDFCC and other processes can also apparently reduce olefin content in FCC gasoline. In order to further reduce the olefin content in gasoline to meet more stringent standard for automotive gasoline, Chinese refiners should optimize the processing scheme while aggressively disseminating hydrogenation process along with development of catalytic reforming,alkylation, etherification and other processes to completely change the simplistic composition of domestic gasoline pool.
文摘PetroChina Jinxi Petrochemical Branch Company has applied the MIP technology in its RFCC unit to maximize the light distillate while using the paraffinic gas oil blended with resid and the coker gasoil as the feedstocks. The outcome of the unit operating according to the MIP mode has revealed that the olefin content in the stabilized gasoline could be reduced to less than 35 % with its research octane number equivalent to and its motor octane number slightly higher than the octane rating of the FCC naphtha obtained by the former operational mode of the RFCC unit, and the diesel yield could reach over 30 m%. The total liquid yield (LPG+gasoline+diesel) of the unit operating according to the MIP mode was by over 1.5 percentage points higher than that achieved in the former RFCC unit.
文摘In order to reduce the coke yield and increase the economic benefits of FCC unit under the prerequisites of securing the olefin content of gasoline in compliance with the requirement, SINOPEC Luoyang Branch Company applied in the period from July through October 2004 the new generation X-62 catalyst (FlexTec-LOL1) developed by the Engelhard Corporation of USA to improve the heavy oil conversion and to reduce coke make. The result of tests has shown that indicators on reducing the unit catalyst consumption,amplitude on reduction of non-ideal products (coke+oil slurry+dry gas) yield, and amplitude on reduction of coke yield were comparatively satisfactory.
文摘The research and development of the CGP-2 catalyst, which was used in the MIP-CGP process for reducing the olefin and sulfur contents of FCC naphtha and enhancing the propylene yield, were introduced. A specific type of metal compound was added into the matrix to provide active centers for reactions including catalytic conversion and selective adsorption of sulfur containing compounds. The CGP-2 catalyst possessed excellent hydrothermal stability to meet the requirements of the 2rid reaction zone of the MIP-CGP process. The commercial test of the said catalyst at the SINOPEC Cangzhou refinery showed that in comparison with the base case (using the CGP-1Z catalyst) the CGP-2 catalyst could reduce the sulfur content of FCC naphtha by 30.32% and increase the propylene yield along with good coke selectivity. Thus, the naphtha produced by the MIP-CGP process at the Cangzhou refinery can meet the new gasoline standard enforced in July 2005.
文摘HGY-2000R catalyst developed by Research Institute of Petroleum Processing, SINOPEC wastested in the RFCC unit, Ulsan complex, SK Corporation, Korea from July to August 2002. The primaryresults of commercial test show that it has good performance of higher activity, good hydrothermal stability,higher residue cracking ability, good coke selectivity and good fluidization properties as well as maximizinggasoline yield with a lower olefin content.
文摘Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.