油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一...油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一种改进的蝠鲼算法(manta ray foraging optimization, MRFO)优化反向传播(back propagation, BP)网络的故障诊断模型。首先利用逻辑映射与反向学习(opposition based learning, OBL)融合的多阶段算法为MRFO提供初始位置,加强算法全局寻优能力;同时提出利用正交实验法优化蝠鲼算法的3种觅食策略,调节蝠鲼个体的探索与开发,以加强该算法在特定问题上的寻优能力;最后将改进的蝠鲼算法寻得的最优解赋予BP网络的权值和偏置,建立变压器故障诊断系统。利用IEC TC 10故障数据进行了实验,并与其他算法进行了结果对比分析。结果表明,所提方法与BPNN、未改进的MRFO-BP、三比值法的结果相比,分别高出16%、8%、24%,是一种积极有效的方法。展开更多
为使配电网故障定位准确且快速,提出了一种基于蝠鲼觅食优化算法(Manta ray foraging optimization,MRFO)的故障区间定位方法.MRFO算法通过蝠鲼3种独特的觅食行为即可实现优化问题的全局快速搜索,具有原理结构简单、实现容易、兼顾全局...为使配电网故障定位准确且快速,提出了一种基于蝠鲼觅食优化算法(Manta ray foraging optimization,MRFO)的故障区间定位方法.MRFO算法通过蝠鲼3种独特的觅食行为即可实现优化问题的全局快速搜索,具有原理结构简单、实现容易、兼顾全局和局部搜索、收敛速度快的特点,分别对无信息畸变的单点故障、含信息畸变的单点故障、无信息畸变的多点故障、含信息畸变的多点故障这4种状况进行仿真实验,此算法准确性得到验证.与遗传算法、正余弦算法、粒子群算法相比,MRFO算法具有更好的准确性、快速性、容错性.展开更多
文摘油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一种改进的蝠鲼算法(manta ray foraging optimization, MRFO)优化反向传播(back propagation, BP)网络的故障诊断模型。首先利用逻辑映射与反向学习(opposition based learning, OBL)融合的多阶段算法为MRFO提供初始位置,加强算法全局寻优能力;同时提出利用正交实验法优化蝠鲼算法的3种觅食策略,调节蝠鲼个体的探索与开发,以加强该算法在特定问题上的寻优能力;最后将改进的蝠鲼算法寻得的最优解赋予BP网络的权值和偏置,建立变压器故障诊断系统。利用IEC TC 10故障数据进行了实验,并与其他算法进行了结果对比分析。结果表明,所提方法与BPNN、未改进的MRFO-BP、三比值法的结果相比,分别高出16%、8%、24%,是一种积极有效的方法。
文摘为使配电网故障定位准确且快速,提出了一种基于蝠鲼觅食优化算法(Manta ray foraging optimization,MRFO)的故障区间定位方法.MRFO算法通过蝠鲼3种独特的觅食行为即可实现优化问题的全局快速搜索,具有原理结构简单、实现容易、兼顾全局和局部搜索、收敛速度快的特点,分别对无信息畸变的单点故障、含信息畸变的单点故障、无信息畸变的多点故障、含信息畸变的多点故障这4种状况进行仿真实验,此算法准确性得到验证.与遗传算法、正余弦算法、粒子群算法相比,MRFO算法具有更好的准确性、快速性、容错性.