期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进神经网络与比值法融合的变压器故障诊断方法 被引量:7
1
作者 李平 胡根铭 《高电压技术》 EI CAS CSCD 北大核心 2023年第9期3898-3906,共9页
为提高采用单神经网络方法的变压器故障诊断精度,该文提出了一种基于改进神经网络与比值法融合的变压器故障诊断方法。针对深层1维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)难以适应变压器溶解气体数据的难题... 为提高采用单神经网络方法的变压器故障诊断精度,该文提出了一种基于改进神经网络与比值法融合的变压器故障诊断方法。针对深层1维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)难以适应变压器溶解气体数据的难题,搭建了改进的1D-CNN作为融合分类方法的基础分类器;为提升神经网络在变压器故障诊断中的应用性能,提出了一种融合分类模块(fusion classification module,FCM),提前筛选出可能被网络错误分类的样本并转由传统比值法进行单条数据分析;并用算例仿真验证了所提方法的可操作性和适应性。研究结果表明:与常规1维卷积神经网络、循环神经网络相比,改进的1D-CNN作为基础分类器的性能表现优异;FCM在不同数据集下对基础分类器均有相应的性能提升,对于初始准确率高于95%的基础分类器提升效果更稳定。 展开更多
关键词 1维卷积神经网络 融合分类方法 比值法 变压器故障诊断 溶解气体
下载PDF
基于多属性分类决策的空中目标威胁评估模型 被引量:16
2
作者 李春芳 赵虹 +2 位作者 巴宏欣 方正 杨波 《指挥信息系统与技术》 2011年第6期55-58,共4页
在空军防空作战中,空中目标威胁等级的判定为防空火力有效配置提供了重要依据,是防空作战指挥决策系统的核心内容。针对目前目标威胁评估存在的不足,构建了一个量化与非量化属性、客观与主观信息相融合的分类决策评估模型,实现对目标威... 在空军防空作战中,空中目标威胁等级的判定为防空火力有效配置提供了重要依据,是防空作战指挥决策系统的核心内容。针对目前目标威胁评估存在的不足,构建了一个量化与非量化属性、客观与主观信息相融合的分类决策评估模型,实现对目标威胁程度的评估。通过一个案例验证了该目标威胁评估方法的可行性。 展开更多
关键词 空中目标威胁评估 多属性决策 分类融合决策方法
下载PDF
加权KNN的图文数据融合分类 被引量:10
3
作者 康丽萍 孙显 许光銮 《中国图象图形学报》 CSCD 北大核心 2016年第7期854-864,共11页
目的图文数据在不同应用场景下的最佳分类方法各不相同,而现有语义级融合算法大多适用于图文数据分类方法相同的情况,若将其应用于不同分类方法时由于分类决策基准不统一导致分类结果不理想,大幅降低了融合分类性能。针对这一问题,提出... 目的图文数据在不同应用场景下的最佳分类方法各不相同,而现有语义级融合算法大多适用于图文数据分类方法相同的情况,若将其应用于不同分类方法时由于分类决策基准不统一导致分类结果不理想,大幅降低了融合分类性能。针对这一问题,提出基于加权KNN的融合分类方法。方法首先,分别利用softmax多分类器和多分类支持向量机(SVM)实现图像和文本分类,同时利用训练数据集各类别分类精确度加权后的图像和文本正确判别实例的分类决策值分别构建图像和文本KNN模型;再分别利用其对测试实例的图像和文本分类决策值进行预测,通过最邻近k个实例属于各类别的数目确定测试实例的分类概率,统一图像和文本的分类决策基准;最后利用训练数据集中图像和文本分类正确的数目确定测试实例中图像和文本分类概率的融合系数,实现统一分类决策基准下的图文数据融合。结果在Attribute Discovery数据集的图像文本对上进行实验,并与基准方法进行比较,实验结果表明,本文融合算法的分类精确度高于图像和文本各自的分类精确度,且平均分类精确度相比基准方法提高了4.45%;此外,本文算法对图文信息的平均整合能力相比基准方法提高了4.19%。结论本文算法将图像和文本不同分类方法的分类决策基准统一化,实现了图文数据的有效融合,具有较强的信息整合能力和较好的融合分类性能。 展开更多
关键词 图文数据 softmax多分类 分类支持向量机 加权KNN 融合分类方法
原文传递
CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION 被引量:1
4
作者 Yang Yi Han Chongzhao Han Deqiang 《Journal of Electronics(China)》 2009年第6期771-776,共6页
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest N... A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective. 展开更多
关键词 Nearest Feature Line (NFL) Evidence combination Classifier fusion Face recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部