期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轻量化YOLOv4的发电机定子表面缺陷检测算法
被引量:
7
1
作者
张凯
罗欣
+1 位作者
孙志刚
肖力
《计算机与数字工程》
2021年第4期686-691,710,共7页
目前大型发电机定子表面缺陷检测主要以抽转子的人工检测为主,存在检测周期长,准确率差等问题,论文提出一种基于轻量化YOLOv4的发电机定子表面缺陷检测算法,以腔内爬壁机器人为载体进行定子缺陷检测。将改进的MobileNetv3作为算法的主...
目前大型发电机定子表面缺陷检测主要以抽转子的人工检测为主,存在检测周期长,准确率差等问题,论文提出一种基于轻量化YOLOv4的发电机定子表面缺陷检测算法,以腔内爬壁机器人为载体进行定子缺陷检测。将改进的MobileNetv3作为算法的主干特征提取网络,通过在特征融合层引入CSP结构,融合卷积层和BN层的方法,使得论文算法模型体积较YOLOv4大幅减小。实验结果表明,论文算法在本文发电机定子表面缺陷数据集上的平均检测精度为98.3%,优于原始YOLOv4,模型体积比YOLOv4缩小了84.5%,检测速度提高了45.4%,表明了该方法在嵌入式平台上进行发电机定子缺陷实时检测的应用前景。
展开更多
关键词
定子缺陷检测
MobileNetV3
YOLOv4
模型轻量化
融合卷积层和bn层
下载PDF
职称材料
题名
基于轻量化YOLOv4的发电机定子表面缺陷检测算法
被引量:
7
1
作者
张凯
罗欣
孙志刚
肖力
机构
华中科技大学人工智能与自动化学院
出处
《计算机与数字工程》
2021年第4期686-691,710,共7页
基金
国家自然科学基金项目“高稳高效无位置传感器永磁同步电机控制方法研究”(编号:51807074)资助。
文摘
目前大型发电机定子表面缺陷检测主要以抽转子的人工检测为主,存在检测周期长,准确率差等问题,论文提出一种基于轻量化YOLOv4的发电机定子表面缺陷检测算法,以腔内爬壁机器人为载体进行定子缺陷检测。将改进的MobileNetv3作为算法的主干特征提取网络,通过在特征融合层引入CSP结构,融合卷积层和BN层的方法,使得论文算法模型体积较YOLOv4大幅减小。实验结果表明,论文算法在本文发电机定子表面缺陷数据集上的平均检测精度为98.3%,优于原始YOLOv4,模型体积比YOLOv4缩小了84.5%,检测速度提高了45.4%,表明了该方法在嵌入式平台上进行发电机定子缺陷实时检测的应用前景。
关键词
定子缺陷检测
MobileNetV3
YOLOv4
模型轻量化
融合卷积层和bn层
Keywords
stator defect detection
MobileNetv3
YOLOv4
model lightweight
fusion of convolution layer and
bn
layer
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于轻量化YOLOv4的发电机定子表面缺陷检测算法
张凯
罗欣
孙志刚
肖力
《计算机与数字工程》
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部