基于2008—2017年全国自动气象观测站逐旬土壤相对湿度观测数据,综合评估中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)0~20 cm层融合土壤相对湿度产品在中国地区的适用性,评估表明CLDAS土壤相对湿度产品在中...基于2008—2017年全国自动气象观测站逐旬土壤相对湿度观测数据,综合评估中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)0~20 cm层融合土壤相对湿度产品在中国地区的适用性,评估表明CLDAS土壤相对湿度产品在中国东北、西北、江南大部及华南等地区存在较大系统性误差,总体上适用性较差。为消除CLDAS土壤相对湿度产品的系统性误差,采用回归订正法、7旬滑动平均订正法和临近加权前旬订正法对CLDAS土壤相对湿度产品进行误差订正处理,对订正结果评估发现:订正处理后CLDAS土壤相对湿度产品与站点观测的相关性显著增加,系统偏差基本消除,适用性明显提高,3种订正方法中临近加权前旬订正法的订正效果最优。最后,采用经不同方法订正后的CLDAS土壤相对湿度产品对2017年5月东北—华北地区一次气象干旱个例进行重现,对比验证表明:相对其他两种订正方法,经临近加权前旬订正法处理后的CLDAS土壤相对湿度产品能更为精准地重现2017年5月东北—华北地区气象干旱的落区和强度。展开更多
土壤水分是控制陆地和大气间水热能量交换的关键因子之一,在地球生态系统中起着重要的作用。定量化获取土壤水分信息对农业生产、应对全球变化、保护生态环境等众多领域都有着重要意义。目前,获取精度较高的大区域土壤湿度信息依然是研...土壤水分是控制陆地和大气间水热能量交换的关键因子之一,在地球生态系统中起着重要的作用。定量化获取土壤水分信息对农业生产、应对全球变化、保护生态环境等众多领域都有着重要意义。目前,获取精度较高的大区域土壤湿度信息依然是研究的热点和难点问题。气候变化倡议项目(climate change initiative,CCI)土壤湿度数据集是由多种主、被动微波数据融合的大尺度土壤湿度数据集,对其在中国区域的数据质量改进具有较高的实际应用价值。研究利用累积概率分布函数(cumulative distribution function,CDF)匹配方法对CCI土壤湿度产品进行改进。选择有较多实测数据的河北、山西、天津等部分区域,获得2009-2010年每月三旬(共72旬)的土壤湿度插值数据,以此为基础利用CDF进行重调整,建立逐像元的CCI土壤湿度数据的改进模型;然后利用站点实测数据进行该方法的有效性验证。结果表明,CDF调整前的偏差、均方根偏差和平均相对误差分别集中在0.05-0.09、0.05-0.1、0.20-0.45,调整后分别降低在0-0.04、0-0.05、0-0.2范围。可见,CDF调整后的误差明显减小,调整后的CCI土壤湿度的精度得到了明显的提高。展开更多
文摘基于2008—2017年全国自动气象观测站逐旬土壤相对湿度观测数据,综合评估中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)0~20 cm层融合土壤相对湿度产品在中国地区的适用性,评估表明CLDAS土壤相对湿度产品在中国东北、西北、江南大部及华南等地区存在较大系统性误差,总体上适用性较差。为消除CLDAS土壤相对湿度产品的系统性误差,采用回归订正法、7旬滑动平均订正法和临近加权前旬订正法对CLDAS土壤相对湿度产品进行误差订正处理,对订正结果评估发现:订正处理后CLDAS土壤相对湿度产品与站点观测的相关性显著增加,系统偏差基本消除,适用性明显提高,3种订正方法中临近加权前旬订正法的订正效果最优。最后,采用经不同方法订正后的CLDAS土壤相对湿度产品对2017年5月东北—华北地区一次气象干旱个例进行重现,对比验证表明:相对其他两种订正方法,经临近加权前旬订正法处理后的CLDAS土壤相对湿度产品能更为精准地重现2017年5月东北—华北地区气象干旱的落区和强度。
文摘土壤水分是控制陆地和大气间水热能量交换的关键因子之一,在地球生态系统中起着重要的作用。定量化获取土壤水分信息对农业生产、应对全球变化、保护生态环境等众多领域都有着重要意义。目前,获取精度较高的大区域土壤湿度信息依然是研究的热点和难点问题。气候变化倡议项目(climate change initiative,CCI)土壤湿度数据集是由多种主、被动微波数据融合的大尺度土壤湿度数据集,对其在中国区域的数据质量改进具有较高的实际应用价值。研究利用累积概率分布函数(cumulative distribution function,CDF)匹配方法对CCI土壤湿度产品进行改进。选择有较多实测数据的河北、山西、天津等部分区域,获得2009-2010年每月三旬(共72旬)的土壤湿度插值数据,以此为基础利用CDF进行重调整,建立逐像元的CCI土壤湿度数据的改进模型;然后利用站点实测数据进行该方法的有效性验证。结果表明,CDF调整前的偏差、均方根偏差和平均相对误差分别集中在0.05-0.09、0.05-0.1、0.20-0.45,调整后分别降低在0-0.04、0-0.05、0-0.2范围。可见,CDF调整后的误差明显减小,调整后的CCI土壤湿度的精度得到了明显的提高。