Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper. How RSV enters an insect cell to initiate the infection cycle is poorly understood. Sequence analysis rev...Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper. How RSV enters an insect cell to initiate the infection cycle is poorly understood. Sequence analysis revealed that the RSV NSvc2 protein was similar to the membrane glycoproteins of several members in the family Bunyaviridae and might induce cell membrane fusion. To conveniently study the membrane fusion activity of NSvc2, we constructed cell surface display vectors for expressing Nsvc2 on the insect cell surface as the membrane glycoproteins of the enveloped viruses. Our results showed that NSvc2 was successfully expressed and displayed on the surface of insect Sf9 cells. When induced by low pH, the membrane fusion was not observed in the cells that expressed NSvc2. Additionally, the membrane fusion was also not detected when co-expressing Nsvc2 and the viral capsid protein on insect cell surface. Thus, RSV NSvc2 is probably different from the phlebovirus counterparts, which could suggest different functions. RSV might enter insect cells other than by fusion with plasma or endosome membrane.展开更多
基金Natural Science Foundation of China Grants (30970138)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper. How RSV enters an insect cell to initiate the infection cycle is poorly understood. Sequence analysis revealed that the RSV NSvc2 protein was similar to the membrane glycoproteins of several members in the family Bunyaviridae and might induce cell membrane fusion. To conveniently study the membrane fusion activity of NSvc2, we constructed cell surface display vectors for expressing Nsvc2 on the insect cell surface as the membrane glycoproteins of the enveloped viruses. Our results showed that NSvc2 was successfully expressed and displayed on the surface of insect Sf9 cells. When induced by low pH, the membrane fusion was not observed in the cells that expressed NSvc2. Additionally, the membrane fusion was also not detected when co-expressing Nsvc2 and the viral capsid protein on insect cell surface. Thus, RSV NSvc2 is probably different from the phlebovirus counterparts, which could suggest different functions. RSV might enter insect cells other than by fusion with plasma or endosome membrane.