Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t...Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.展开更多
Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectivel...Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectively defend against attacks and attackers. To do this, correlative information provided by IDS must be gathered and the current intrusion characteristics and sit- uation must be analyzed and estimated. This paper applies D-S evidence theory to distributed intrusion detection system for fusing information from detection centers, making clear intrusion situation, and improving the early warning capability and detection efficiency of the IDS accord- ingly.展开更多
How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form cou...How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest N...A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.展开更多
Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated...Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective predi...A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective prediction values to determine the importance weight of each sensor and realize multi-sensor data fusion. Then according to the determined importance weight, an intelligent fusion system based on fuzzy integral theory was given, which can solve FEI-DEO and DEI-DEO fusion problems and realize the decision fusion. Simulation results were proved that fuzzy integral algorithm has enhanced the capability of handling the uncertain information and improved the intelligence degrees展开更多
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima...In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.展开更多
文摘Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.
文摘Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectively defend against attacks and attackers. To do this, correlative information provided by IDS must be gathered and the current intrusion characteristics and sit- uation must be analyzed and estimated. This paper applies D-S evidence theory to distributed intrusion detection system for fusing information from detection centers, making clear intrusion situation, and improving the early warning capability and detection efficiency of the IDS accord- ingly.
文摘How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
基金Supported by Grant for State Key Program for Basic Research of China (973) (No. 2007CB311006)
文摘A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.
文摘Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.
基金Supported by the National Natural Science Foundation of China (50874059, 70971059) the Research Fund for the Doctoral Program of Higher Educa- tion of China (200801470003)
文摘A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective prediction values to determine the importance weight of each sensor and realize multi-sensor data fusion. Then according to the determined importance weight, an intelligent fusion system based on fuzzy integral theory was given, which can solve FEI-DEO and DEI-DEO fusion problems and realize the decision fusion. Simulation results were proved that fuzzy integral algorithm has enhanced the capability of handling the uncertain information and improved the intelligence degrees
基金The National High Technology Research and Development Program of China(‘863’Program)grant number:2007AA02Z4A9+1 种基金National Natural Science Foundation of Chinagrant number:30671997
文摘In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.