期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
列车轴箱轴承在途鲁棒可视化故障诊断方法 被引量:7
1
作者 付云骁 贾利民 +2 位作者 杨杰 魏秀琨 秦勇 《铁道学报》 EI CAS CSCD 北大核心 2018年第12期38-45,共8页
为使列车轴箱轴承在非平稳工况下的故障识别更加有效,本文提出基于融合相关熵特征的鲁棒可视化滚动轴承故障诊断方法。通过快速集成经验模态分解FEEMD对轴承振动信号进行时频分解,提取本征模函数IMF矩阵;计算IMF与原始信号的线性相关系... 为使列车轴箱轴承在非平稳工况下的故障识别更加有效,本文提出基于融合相关熵特征的鲁棒可视化滚动轴承故障诊断方法。通过快速集成经验模态分解FEEMD对轴承振动信号进行时频分解,提取本征模函数IMF矩阵;计算IMF与原始信号的线性相关系LCC作为相关熵的调幅系数,进而通过相关统计计算获得样本集的多维相关熵矩阵CM;利用主元分析PCA对CM进行数据空间变换,通过提取变换后的融合相关熵矩阵ICM,实现相关熵矩阵的可视化。通过实验分别提取匀加速、匀速及匀减速3种运行工况下的滚动轴承ICM特征,通过对比EMD、EEMD和FEEMD 3种信号分解方法,发现FEEMD的信号分解效率更高,且ICM比传统特征对非平稳工况下轴承故障辨识的鲁棒性更好。FEEMD-ICM为轴箱轴承快速、客观且稳定的故障诊断实现提供了可靠的理论依据和技术支持。 展开更多
关键词 快速经验模态分解 融合相关熵矩阵 主成分分析 滚动轴承 可视化 故障诊断
下载PDF
基于LMD-CM-PCA的滚动轴承故障诊断方法 被引量:11
2
作者 付云骁 贾利民 +1 位作者 秦勇 杨杰 《振动.测试与诊断》 EI CSCD 北大核心 2017年第2期249-255,共7页
为提高在非平稳工况下对滚动轴承故障的直观辨识能力,笔者提出基于LMD-CM-PCA的故障诊断方法。首先,对滚动轴承振动信号进行局部均值分解(local mean decomposition,简称LMD),提取乘积函数(product function,简称PF)矩阵;然后,计算PF矩... 为提高在非平稳工况下对滚动轴承故障的直观辨识能力,笔者提出基于LMD-CM-PCA的故障诊断方法。首先,对滚动轴承振动信号进行局部均值分解(local mean decomposition,简称LMD),提取乘积函数(product function,简称PF)矩阵;然后,计算PF矩阵与原振动信号的皮氏相关系数(pearson product-moment correlation coefficient,简称PPCC),将PFs对应的PPCC代入相关熵模型得到PF的相关熵矩阵(correntropy matrix,简称CM),CM经主成分分析(principal component analysis,简称PCA)进行特征变换得到融合相关熵矩阵(integrated correntropy matrix,简称ICM)。分别在轻微和严重故障时,对滚动轴承不同工况下的振动样本进行交叉混合,并计算其ICM。结果证明,ICM在可视维度比传统特征(如:能量矩和谱峭度)的融合特征更能隔离工况对故障可分性的干扰。LMD-CM-PCA方法为滚动轴承故障的直观辨识提供了技术支持,在故障诊断方面具有良好的应用前景。 展开更多
关键词 局部均值分解 融合相关熵矩阵 主成分分析 滚动轴承 故障诊断 可视化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部