This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important reg...This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region’s degree of membership in the multiresolution representation, and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods.展开更多
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima...In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60375008), China Aviation Science Foundation (No.02D57003), China Ph.D Discipline Special Foundation (No.20020248029), and Shanghai Key Scientific Project (No.02DZ15001), China
文摘This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region’s degree of membership in the multiresolution representation, and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods.
基金The National High Technology Research and Development Program of China(‘863’Program)grant number:2007AA02Z4A9+1 种基金National Natural Science Foundation of Chinagrant number:30671997
文摘In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.