Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution ...Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution rate of alumina was studied intuitively and roundly using transparent quartz electrobath and image analysis techniques. Images about dissolution process of alumina were taken at an interval of fixed time from transparent quartz electrobath of double rooms. Gabor wavelet transforms were used for extracting and describing the texture features of each image. After subsampling several times, the dissolution rate of alumina was computed using these texture features in local neighborhood of samples. Regression equation of the dissolution rate of alumina was obtained using these dissolution rates. Experiments show that the regression equation of the dissolution rate of alumina is y=-0.000 5x^3+0.024 0x^2-0.287 3x+ 1.276 7 for Na3AIF6-AIF3-Al2O3-CaF2-LiF- MgF2 system at 920 ℃.展开更多
The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning p...The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30-170 μm in thickness, 4-8 mm in width, and 0.5-1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161-274 μm, depending on the process parameters.Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle-wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×10^5 and 1.26×10^4 K/s for the ribbon with thickness of 30 μm and for the powder with size of 87 μm, respectively.展开更多
The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was us...The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was used to synthesize γ-LiAlO2.Highly dispersed AlOOH·nH2O and LiOH·H2O aqueous solutions were mixed to form a colloid mixture,which was calcined to synthesize γ-LiAlO2.Thermogravimetric analysis(TGA),X-ray dif-fraction(XRD),and scanning electron microscopy(SEM) were used to study the composition and morphology of the intermediate and final products.The analysis results showed that an intermediate product Li2Al4CO3(OH)12 was produced after the colloid mixture was dried at 80 ℃,and highly purified γ-LiAlO2 powder with fine particle size was resulted from the subsequent calcinations.A single MCFC was assembled with a matrix of the γ-LiAlO2 pow-der.The testing results showed that the matrix performed well in preventing gas leakage.展开更多
基金Projects(51101104,51072121) supported by the National Natural Science Foundation of ChinaProject(LS2010109) supported by the Key Laboratory Foundation of Liaoning Province,China
文摘Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution rate of alumina was studied intuitively and roundly using transparent quartz electrobath and image analysis techniques. Images about dissolution process of alumina were taken at an interval of fixed time from transparent quartz electrobath of double rooms. Gabor wavelet transforms were used for extracting and describing the texture features of each image. After subsampling several times, the dissolution rate of alumina was computed using these texture features in local neighborhood of samples. Regression equation of the dissolution rate of alumina was obtained using these dissolution rates. Experiments show that the regression equation of the dissolution rate of alumina is y=-0.000 5x^3+0.024 0x^2-0.287 3x+ 1.276 7 for Na3AIF6-AIF3-Al2O3-CaF2-LiF- MgF2 system at 920 ℃.
文摘The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30-170 μm in thickness, 4-8 mm in width, and 0.5-1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161-274 μm, depending on the process parameters.Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle-wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×10^5 and 1.26×10^4 K/s for the ribbon with thickness of 30 μm and for the powder with size of 87 μm, respectively.
基金Supported by the Green Gen plan Program of China Huaneng Group (HNKJ06-H01)
文摘The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was used to synthesize γ-LiAlO2.Highly dispersed AlOOH·nH2O and LiOH·H2O aqueous solutions were mixed to form a colloid mixture,which was calcined to synthesize γ-LiAlO2.Thermogravimetric analysis(TGA),X-ray dif-fraction(XRD),and scanning electron microscopy(SEM) were used to study the composition and morphology of the intermediate and final products.The analysis results showed that an intermediate product Li2Al4CO3(OH)12 was produced after the colloid mixture was dried at 80 ℃,and highly purified γ-LiAlO2 powder with fine particle size was resulted from the subsequent calcinations.A single MCFC was assembled with a matrix of the γ-LiAlO2 pow-der.The testing results showed that the matrix performed well in preventing gas leakage.