This paper aims to derive the time-consistent investment strategy for the defined contribution(DC) pension plan under the mean-variance criterion.The financial market consists of a risk-free asset and a risky asset of...This paper aims to derive the time-consistent investment strategy for the defined contribution(DC) pension plan under the mean-variance criterion.The financial market consists of a risk-free asset and a risky asset of which price process satisfies the constant elasticity of variance(CEV) model.Compared with the geometric Brownian motion model,the CEV model has the ability of capturing the implied volatility skew and explaining the volatility smile.The authors assume that the contribution to the pension fund is a constant proportion of the pension member's salary.Meanwhile,the salary is stochastic and its volatility arises from the price process of the risky asset,which makes the proposed model different from most of existing researches and more realistic.In the proposed model,the optimization problem can be decomposed into two sub-problems:Before and after retirement cases.By applying a game theoretic framework and solving extended Hamilton-Jacobi-Bellman(HJB) systems,the authors derive the time-consistent strategies and the corresponding value functions explicitly.Finally,numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategies.展开更多
This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the c...This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the case of investment in a Black-Scholes market with risky asset such as stock. The classical problem is to find the optimal dividend payment strategy that maximizes the expectation of discounted dividend payment until ruin. Motivated by the idea of Thonhauser and Albrecher (2007), we take the lifetime of the controlled risk process into account, that is, the value function considers both the expectation of discounted dividend payment and the time value of ruin. The authors conclude that the optimal dividend strategy is a barrier strategy for the unbounded dividend payment case and is of threshold type for the bounded dividend payment case.展开更多
基金the National Natural Science Foundation of China under Grant Nos.11201335,11301376,and 71573110
文摘This paper aims to derive the time-consistent investment strategy for the defined contribution(DC) pension plan under the mean-variance criterion.The financial market consists of a risk-free asset and a risky asset of which price process satisfies the constant elasticity of variance(CEV) model.Compared with the geometric Brownian motion model,the CEV model has the ability of capturing the implied volatility skew and explaining the volatility smile.The authors assume that the contribution to the pension fund is a constant proportion of the pension member's salary.Meanwhile,the salary is stochastic and its volatility arises from the price process of the risky asset,which makes the proposed model different from most of existing researches and more realistic.In the proposed model,the optimization problem can be decomposed into two sub-problems:Before and after retirement cases.By applying a game theoretic framework and solving extended Hamilton-Jacobi-Bellman(HJB) systems,the authors derive the time-consistent strategies and the corresponding value functions explicitly.Finally,numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategies.
基金This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814905 and the National Natural Science Foundation of China under Grant No. 10871102.
文摘This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the case of investment in a Black-Scholes market with risky asset such as stock. The classical problem is to find the optimal dividend payment strategy that maximizes the expectation of discounted dividend payment until ruin. Motivated by the idea of Thonhauser and Albrecher (2007), we take the lifetime of the controlled risk process into account, that is, the value function considers both the expectation of discounted dividend payment and the time value of ruin. The authors conclude that the optimal dividend strategy is a barrier strategy for the unbounded dividend payment case and is of threshold type for the bounded dividend payment case.