A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagat...A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.展开更多
This paper presents a study on potential instability and spiral structure of unstable rain clusters.First,we develop a linearized non-axisymmetrical mathematic model for rain clusters in circular cylindrical coordinat...This paper presents a study on potential instability and spiral structure of unstable rain clusters.First,we develop a linearized non-axisymmetrical mathematic model for rain clusters in circular cylindrical coordinates and acquire its analytic solution.Second,we discuss the potential instability of non-axisymmetrical rain clusters.Finally,we conclude that spiral structures can exist in rain clusters.Our analysis indicates that potential instability occurs when humid stratification coefficient is less than zero.Unstable growth rate increases with the increase of the absolute value for humid stratification coefficient.The simpler the vertical structure of perturbation,the thicker the inversion layer;additionally,the smaller the radius of the rain clusters,the larger the unstable growth rate.Simulation results agree well with those from observation and forecast.The spiral structure simulated by our model is similar to a radar echo,suggesting that rain clusters with spiral structures can occur in the atmosphere.In addition,they are generally close to the model solution in this work.展开更多
With the gradual deepening of study on the parallel mechanism,the difficulty brought by the existence of coupling to the theoretical analysis and practical application of parallel mechanisms is becoming increasingly a...With the gradual deepening of study on the parallel mechanism,the difficulty brought by the existence of coupling to the theoretical analysis and practical application of parallel mechanisms is becoming increasingly apparent.The research on the decoupled parallel mechanism is currently one of the hot fields.Though most of the rotational parallel mechanisms,which has been widely used in spatial orientation fields,are not decoupled.It is comparative difficult for the synthesis of fully decoupled rotational parallel mechanisms,and the number of the existing parallel mechanisms which can realize rotational decoupling is limited.In addition,most of the existing rotational decoupled parallel mechanism are obtained depending on the experience of the researcher,and don't possess the general theoretical significance.Based on the screw theory,this paper presents the rotational conditions of the parallel mechanism through the analysis of the relationship between the degree of freedom of the parallel mechanism and its limbs.The synthesis rule of the limbs for decoupled rotational parallel mechanism is established according to the twist screw system of the limbs,which assures the decoupling of the rotations in each limb.The selection principle of the input pairs for the rotation driven limbs is proposed,then the type synthesis method for rotational decoupled parallel mechanisms is formed.With this type synthesis method,synthesis of the rotational decoupled parallel mechanisms is performed,which can provide a reference for the development of the novel type parallel mechanisms with independent intellectual property rights.展开更多
文摘A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.
基金National Natural Science Foundation of China.(4097503141005074)
文摘This paper presents a study on potential instability and spiral structure of unstable rain clusters.First,we develop a linearized non-axisymmetrical mathematic model for rain clusters in circular cylindrical coordinates and acquire its analytic solution.Second,we discuss the potential instability of non-axisymmetrical rain clusters.Finally,we conclude that spiral structures can exist in rain clusters.Our analysis indicates that potential instability occurs when humid stratification coefficient is less than zero.Unstable growth rate increases with the increase of the absolute value for humid stratification coefficient.The simpler the vertical structure of perturbation,the thicker the inversion layer;additionally,the smaller the radius of the rain clusters,the larger the unstable growth rate.Simulation results agree well with those from observation and forecast.The spiral structure simulated by our model is similar to a radar echo,suggesting that rain clusters with spiral structures can occur in the atmosphere.In addition,they are generally close to the model solution in this work.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50875227, 51005195)
文摘With the gradual deepening of study on the parallel mechanism,the difficulty brought by the existence of coupling to the theoretical analysis and practical application of parallel mechanisms is becoming increasingly apparent.The research on the decoupled parallel mechanism is currently one of the hot fields.Though most of the rotational parallel mechanisms,which has been widely used in spatial orientation fields,are not decoupled.It is comparative difficult for the synthesis of fully decoupled rotational parallel mechanisms,and the number of the existing parallel mechanisms which can realize rotational decoupling is limited.In addition,most of the existing rotational decoupled parallel mechanism are obtained depending on the experience of the researcher,and don't possess the general theoretical significance.Based on the screw theory,this paper presents the rotational conditions of the parallel mechanism through the analysis of the relationship between the degree of freedom of the parallel mechanism and its limbs.The synthesis rule of the limbs for decoupled rotational parallel mechanism is established according to the twist screw system of the limbs,which assures the decoupling of the rotations in each limb.The selection principle of the input pairs for the rotation driven limbs is proposed,then the type synthesis method for rotational decoupled parallel mechanisms is formed.With this type synthesis method,synthesis of the rotational decoupled parallel mechanisms is performed,which can provide a reference for the development of the novel type parallel mechanisms with independent intellectual property rights.