目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neur...目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neural network)模型训练方法。方法在航拍巡检图像预处理阶段,设计了基于先验信息的感兴趣区域提取算法,能够提取被识别目标的上下文区域,从而减少模型训练阶段的数据量,帮助模型在训练阶段关注重点区域,提高其特征提取能力。在模型训练阶段,首先通过费舍尔损失约束Faster R-CNN模型的输出特征生成,使样本特征具有较小的类内距离和较大的类间间隔;然后采用K近邻算法处理样本特征得到K近邻概率,将其作为难易样本的指示以引导模型后续更加关注难样本。结果在真实航拍巡检图像构建的螺栓数据集上进行测试,与基线模型相比,本文模型使螺栓识别的平均精度均值(mean average precision,mAP)提高了6.4%,其中正常螺栓识别的平均精度(average precision,AP)提高了0.9%,缺陷螺栓识别的平均精度提高了12%。结论提出的融合先验信息和特征约束的输电杆塔螺栓缺陷检测方法在缺陷螺栓识别上获得了良好的效果,为实现输电线路螺栓缺陷的自动检测奠定了良好的基础。展开更多
文摘目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neural network)模型训练方法。方法在航拍巡检图像预处理阶段,设计了基于先验信息的感兴趣区域提取算法,能够提取被识别目标的上下文区域,从而减少模型训练阶段的数据量,帮助模型在训练阶段关注重点区域,提高其特征提取能力。在模型训练阶段,首先通过费舍尔损失约束Faster R-CNN模型的输出特征生成,使样本特征具有较小的类内距离和较大的类间间隔;然后采用K近邻算法处理样本特征得到K近邻概率,将其作为难易样本的指示以引导模型后续更加关注难样本。结果在真实航拍巡检图像构建的螺栓数据集上进行测试,与基线模型相比,本文模型使螺栓识别的平均精度均值(mean average precision,mAP)提高了6.4%,其中正常螺栓识别的平均精度(average precision,AP)提高了0.9%,缺陷螺栓识别的平均精度提高了12%。结论提出的融合先验信息和特征约束的输电杆塔螺栓缺陷检测方法在缺陷螺栓识别上获得了良好的效果,为实现输电线路螺栓缺陷的自动检测奠定了良好的基础。