期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5s的桥梁螺栓缺陷识别方法
被引量:
1
1
作者
张洪
朱志伟
+2 位作者
胡天宇
龚燕峰
周建庭
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第3期749-760,共12页
针对现有算法在检测桥梁螺栓缺陷时因螺栓背景复杂和尺寸较小而导致的特征提取不充分、目标定位不精确问题,提出了一种基于改进YOLOv5s的桥梁螺栓缺陷识别方法。该方法在骨干网络中引入注意力机制以提升模型对螺栓特征的提取能力并加深...
针对现有算法在检测桥梁螺栓缺陷时因螺栓背景复杂和尺寸较小而导致的特征提取不充分、目标定位不精确问题,提出了一种基于改进YOLOv5s的桥梁螺栓缺陷识别方法。该方法在骨干网络中引入注意力机制以提升模型对螺栓特征的提取能力并加深对螺栓全局特征的关注度;优化空间金字塔池化结构以减少螺栓特征信息流失;采用MPDIoU作为边界框回归损失函数,提高螺栓边界框的回归精度;将YOLO检测头解耦以消除目标检测中分类任务和回归任务共享检测头对边界框位置回归的负面影响。在螺栓锈蚀、螺栓松动、螺栓脱落和螺母脱落4类典型缺陷螺栓以及正常螺栓的3810张自制螺栓图像数据集上进行训练和测试,实验结果表明:本文算法对螺栓缺陷的检测精度达到90.8%,相较于YOLOv5s提升了3%,均值平均精度达到92.6%,相较于YOLOv5s提升了4.3%,可以应用于桥梁螺栓的缺陷智能识别。
展开更多
关键词
桥梁工程
螺栓缺陷识别
YOLOv5s
桥梁
螺栓
原文传递
题名
基于改进YOLOv5s的桥梁螺栓缺陷识别方法
被引量:
1
1
作者
张洪
朱志伟
胡天宇
龚燕峰
周建庭
机构
重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室
重庆交通大学信息科学与工程学院
重庆交通大学航运与船舶工程学院
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第3期749-760,共12页
基金
国家自然科学基金项目(52278291,U20A20314)
重庆市自然科学基金项目(CSTB2022NSCQ-LZX0006,CSTB2022TIAD-KPX0205)
重庆交通大学研究生科研创新项目(2023S0083).
文摘
针对现有算法在检测桥梁螺栓缺陷时因螺栓背景复杂和尺寸较小而导致的特征提取不充分、目标定位不精确问题,提出了一种基于改进YOLOv5s的桥梁螺栓缺陷识别方法。该方法在骨干网络中引入注意力机制以提升模型对螺栓特征的提取能力并加深对螺栓全局特征的关注度;优化空间金字塔池化结构以减少螺栓特征信息流失;采用MPDIoU作为边界框回归损失函数,提高螺栓边界框的回归精度;将YOLO检测头解耦以消除目标检测中分类任务和回归任务共享检测头对边界框位置回归的负面影响。在螺栓锈蚀、螺栓松动、螺栓脱落和螺母脱落4类典型缺陷螺栓以及正常螺栓的3810张自制螺栓图像数据集上进行训练和测试,实验结果表明:本文算法对螺栓缺陷的检测精度达到90.8%,相较于YOLOv5s提升了3%,均值平均精度达到92.6%,相较于YOLOv5s提升了4.3%,可以应用于桥梁螺栓的缺陷智能识别。
关键词
桥梁工程
螺栓缺陷识别
YOLOv5s
桥梁
螺栓
Keywords
bridge engineering
bolt defect identification
YOLOv5s
bridge bolts
分类号
U448.14 [建筑科学—桥梁与隧道工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5s的桥梁螺栓缺陷识别方法
张洪
朱志伟
胡天宇
龚燕峰
周建庭
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部