The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate...The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate wing and propeller parameters are determined.The predicted performance of isolated propeller,wing and rotor combination is examined.Three kinds of tip speed and a range of load share setting are investigated.Propeller bearing 80%of the thrust with wing sharing lift is found to be the best condition to have better performance and the maximum L/D for maximum forward speed.Detailed rotor,propeller,and wing performance are examined for sea level,1000 m,and 2000 m cruise altitude.Rotor,propeller,and wing power are found to be largely from profile drag,except at low speed where the wing is near stall.Increased elevation offloads lift from the rotor to the wing,dropping the total power required and increasing the maximum speed limit over 400 km/h.展开更多
文摘The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate wing and propeller parameters are determined.The predicted performance of isolated propeller,wing and rotor combination is examined.Three kinds of tip speed and a range of load share setting are investigated.Propeller bearing 80%of the thrust with wing sharing lift is found to be the best condition to have better performance and the maximum L/D for maximum forward speed.Detailed rotor,propeller,and wing performance are examined for sea level,1000 m,and 2000 m cruise altitude.Rotor,propeller,and wing power are found to be largely from profile drag,except at low speed where the wing is near stall.Increased elevation offloads lift from the rotor to the wing,dropping the total power required and increasing the maximum speed limit over 400 km/h.