The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affecte...The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.展开更多
Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distrib...Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.展开更多
The creep behaviors of as-cast Mg-5Zn-2.5Er alloy(mass fraction,%) ,under various applied stresses(50-70 MPa) and creep temperatures(150-200℃) for 100 h,were investigated.The stress exponent n is in the range of 1.5-...The creep behaviors of as-cast Mg-5Zn-2.5Er alloy(mass fraction,%) ,under various applied stresses(50-70 MPa) and creep temperatures(150-200℃) for 100 h,were investigated.The stress exponent n is in the range of 1.5-5.8,and the activation energy Qc is in the range of 28.3-77.1 kJ/mol.With respect to the calculated n and Qc as well as the microstructures after creep,it is suggested that there is a transition region between grain boundary sliding(GBS) dominated creep to dislocation creep mechanism(from n<3 to n>3) ,arising in the steady-stage creep rate value of 2.89×10-9 s-1.展开更多
文摘The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.
基金supported by the National Natural Science Foundation of China(No.50904065)the Program for New Century Excellent Talents in University(No.NCET-09-0728)
文摘Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.
基金Project(2007CB613706) supported by the National Basic Research Program of China
文摘The creep behaviors of as-cast Mg-5Zn-2.5Er alloy(mass fraction,%) ,under various applied stresses(50-70 MPa) and creep temperatures(150-200℃) for 100 h,were investigated.The stress exponent n is in the range of 1.5-5.8,and the activation energy Qc is in the range of 28.3-77.1 kJ/mol.With respect to the calculated n and Qc as well as the microstructures after creep,it is suggested that there is a transition region between grain boundary sliding(GBS) dominated creep to dislocation creep mechanism(from n<3 to n>3) ,arising in the steady-stage creep rate value of 2.89×10-9 s-1.