Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycopr...Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm:. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing frac- tional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mecha- nism for most cell rolling events through P-selectin.展开更多
The hemodynamics of intracranial aneurysm(IA)comprises complex transient flow patterns that affect its growth and rupture.Owing to the combined effects of geometrical factors and pulsatile flow conditions,the transien...The hemodynamics of intracranial aneurysm(IA)comprises complex transient flow patterns that affect its growth and rupture.Owing to the combined effects of geometrical factors and pulsatile flow conditions,the transient flow patterns in the IA are still unclear.The purpose of this work is to reveal the effect of the aspect ratio(AR,sac height/neck width)on the evolution of the internal flow patterns and the hemodynamics of the IA.We proposed an easy method to fabricate three simplified elastic IA models and measured the transient flow characteristics by using particle image velocimetry(PIV).Transient vortex structures in the IA modes during a cardiac cycle were systemically measured and many new flow phenomena were found,including the vortex morphology(size,structure,and core location),a high-speed jet,wall compliance effects,and three flow modes during retrograde flow phase.The results show that the AR of the IA affects the transient flow patterns as well as the wall shear stress(WSS)in complex ways.The results could deepen our understanding of the transient flow behaviors in IA and guide related clinical studies.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11272125,11072080,31170887 and 31200705)Guangdong Natural Science Foundation(Grant No.S2011010005451)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110172110030)
文摘Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm:. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing frac- tional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mecha- nism for most cell rolling events through P-selectin.
基金supported by the National Natural Science Foundation of China(Grant Nos:12172017 and 11872083)Project of Beijing Municipal Education Commission(Grant Nos.KZ202210005006 and KZ202110005007).
文摘The hemodynamics of intracranial aneurysm(IA)comprises complex transient flow patterns that affect its growth and rupture.Owing to the combined effects of geometrical factors and pulsatile flow conditions,the transient flow patterns in the IA are still unclear.The purpose of this work is to reveal the effect of the aspect ratio(AR,sac height/neck width)on the evolution of the internal flow patterns and the hemodynamics of the IA.We proposed an easy method to fabricate three simplified elastic IA models and measured the transient flow characteristics by using particle image velocimetry(PIV).Transient vortex structures in the IA modes during a cardiac cycle were systemically measured and many new flow phenomena were found,including the vortex morphology(size,structure,and core location),a high-speed jet,wall compliance effects,and three flow modes during retrograde flow phase.The results show that the AR of the IA affects the transient flow patterns as well as the wall shear stress(WSS)in complex ways.The results could deepen our understanding of the transient flow behaviors in IA and guide related clinical studies.