The study of pulsatile blood flow through axisymmetric stenosed artery subject to an axial translation has been attempted with hematocrit concentration-dependent blood viscosity. The heart contraction and subsequent r...The study of pulsatile blood flow through axisymmetric stenosed artery subject to an axial translation has been attempted with hematocrit concentration-dependent blood viscosity. The heart contraction and subsequent relaxation generate periodic pressure gradient in blood flow and translation in the artery can be represented by Fourier series. Numerical data required for computing Fourier harmonics for the pressure gradient and acceleration in the artery has been simulated from pressure waveform graph and biplanar angiogram. Velocity field has been obtained by solving governing equation using variational Ritz method. The hemodynamic indicators WSS, AWSS, OSI, RRT are derived and computed numerically. The effects of thickness of stenosis, and hematocrit concentration index on these indicators are computed and analyzed through graphs.展开更多
文摘The study of pulsatile blood flow through axisymmetric stenosed artery subject to an axial translation has been attempted with hematocrit concentration-dependent blood viscosity. The heart contraction and subsequent relaxation generate periodic pressure gradient in blood flow and translation in the artery can be represented by Fourier series. Numerical data required for computing Fourier harmonics for the pressure gradient and acceleration in the artery has been simulated from pressure waveform graph and biplanar angiogram. Velocity field has been obtained by solving governing equation using variational Ritz method. The hemodynamic indicators WSS, AWSS, OSI, RRT are derived and computed numerically. The effects of thickness of stenosis, and hematocrit concentration index on these indicators are computed and analyzed through graphs.