Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase wit...Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 si RNA, but not scrambled si RNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate(by 61%) upon ADAMTS-7 overexpression and retarded proliferation(by 23%) upon ADAMTS-7 si RNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.展开更多
基金supported by funding from the International Cooperation and Exchanges of the National Natural Science Foundation of China(81220108004)the National Basic Research Program of China(2012CB518002)+2 种基金the National Natural Science Foundation of China(81070243,81121061,91339000)the National Science Fund for Distinguished Young Scholars(81225002)Program of Introducing Talents of Discipline to Universities,Ministry of Education of China(B07001)
文摘Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 si RNA, but not scrambled si RNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate(by 61%) upon ADAMTS-7 overexpression and retarded proliferation(by 23%) upon ADAMTS-7 si RNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.