The clinical implications of non-alcoholic fatty liver diseases(NAFLD)derive from their potential to progress to fibrosis and cirrhosis.Inappropriate dietary fat intake,excessive intake of soft drinks,insulin resistan...The clinical implications of non-alcoholic fatty liver diseases(NAFLD)derive from their potential to progress to fibrosis and cirrhosis.Inappropriate dietary fat intake,excessive intake of soft drinks,insulin resistance and increased oxidative stress results in increased free fatty acid delivery to the liver and increased hepatic triglyceride(TG)accumulation.An olive oil-rich diet decreases accumulation of TGs in the liver,improves postprandial TGs,glucose and glucagonlike peptide-1 responses in insulin-resistant subjects, and upregulates glucose transporter-2 expression in the liver.The principal mechanisms include:decreased nuclear factor-kappaB activation,decreased lowdensity lipoprotein oxidation,and improved insulin resistance by reduced production of inflammatory cytokines(tumor necrosis factor,interleukin-6)and improvement of jun N-terminal kinase-mediated phosphorylation of insulin receptor substrate-1.The beneficial effect of the Mediterranean diet is derived from monounsaturated fatty acids,mainly from olive oil.In this review,we describe the dietary sources of the monounsaturated fatty acids,the composition of olive oil,dietary fats and their relationship to insulin resistance and postprandial lipid and glucose responses in non-alcoholic steatohepatitis,clinical and experimental studies that assess the relationship between olive oil and NAFLD,and the mechanism by which olive oil ameliorates fatty liver,and we discuss future perspectives.展开更多
This study included treatment of diabetic patients--type II with a polyherbs containing Nigella sativa, Trigonell foenum-graceum, Cyperus rotundus, Teucrium polium divided into two groups, first group was taken herbs ...This study included treatment of diabetic patients--type II with a polyherbs containing Nigella sativa, Trigonell foenum-graceum, Cyperus rotundus, Teucrium polium divided into two groups, first group was taken herbs with chemical treatment (drugs) and the other group which used herbs only. These groups were compared with healthy persons as a control group. Separation of the lipid component containing in the serum of two groups under study for diabetes mellitus patient--type lI before and after treatment with polyherbs by patients were performed. The separation of the components of different kinds of lipid parts like cholesterol ester (CE), triglyceride and phospholipids, in the blood using thin layer chromatography (TLC) and capillary gas chromatography (CGC). The results of this study for ester cholesterol part of serum patients show that there was a significant increase in the percentage of saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) before the treatment of the two groups compared to the control group and a significant decrease was observed in the percentage of these fatty acid after the treatment by polyherbal mixture than the percentage before treatment. Also, the results for the same part of ester cholesterol serum were showed a significant decrease in percentage of polyunsaturated fatty acid (PUFA) in the two groups of diabetes mellitus patients in comparison with the control group and there were a significant increase observed in PUFA percentage after the treatment. For triglyceride part in serum lipid, the results of this study were shown that there was a significant increase in percentage of SFA and PUFA before treatment in comparison with control group and after treatment for three months of the two groups of patients, shows a significant decrease in SFA but an increase in the percentage of PUFA was observed than that observed before treatment, also, there was a significant decrease in MUFA before treatment comparison with control group, while there was a significant increase which was observed after treatment in a percentage for the two groups of triglyceride part in serum lipid. The results indicated that there was a significant decrease in percentage of SFA before and after also in MUFA after the treatment in both groups compared with control and a significantly increase in PUFA percentage was also shown for phospholipids part in the serum.展开更多
OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated ...OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated FFAs and glucose may cross-amplify their individual injurious effects. METHODS: Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24 - 96 h. Morphologic alterations were observed using a phase contrast microscope and an electron microscope. Inhibition of proliferation was measured by a colorimetric 3-[4, 5-dimethyl thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell viability was determined using trypan blue exclusion. Distribution of cells along phases of the cell cycle was analyzed by flow cytometry. RESULTS: Glucose 15 or 30 mmol/L, palmitate (PA) 0.25 or 0.5 mmol/L, and oleate (OA) 0.5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose-and-time-dependent manner. After treatment with elevated glucose and/or FFAs, the G(0)/G(1) phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G(0)/G(1) phase. The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L + PA 0.25 mmol/L, glucose 30 mmol/L + OA 0.5 mmol/L, glucose 30 mmol/L + PA 0.25 mmol/L + OA 0.5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone. CONCLUSION: Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro. These changes were cross-amplified in the combined presence of high levels of glucose and FFAs.展开更多
s To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro , and to examine whether the combined presence of elevated FFAs ...s To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro , and to examine whether the combined presence of elevated FFAs and glucose may cross amplify their individual injurious effects Methods Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24-96 h Morphologic alterations were observed using a phase contrast microscope and an electron microscope Inhibition of proliferation was measured by a colorimetric 3 [4, 5 dimethyl thiazol 2 yl] 2, 5 diphenyltetrazolium bromide (MTT) assay Cell viability was determined using trypan blue exclusion Distribution of cells along phases of the cell cycle was analyzed by flow cytometry Results Glucose 15 or 30 mmol/L, palmitate (PA) 0 25 or 0 5 mmol/L, and oleate (OA) 0 5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose and time dependent manner After treatment with elevated glucose and/or FFAs, the G 0/G 1 phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G 0/G 1 phase The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L+PA 0 25 mmol/L, glucose 30 mmol/L+OA 0 5 mmol/L, glucose 30 mmol/L+PA 0 25 mmol/L+OA 0 5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone Conclusion Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro These changes were cross amplified in the combined presence of high levels of glucose and FFAs展开更多
The supplementation with 50, 100 and 150μg/mL potassium chloride to the fifth instar larvae of the silkworm Bombyx mori on fat body glycogen, protein, total lipids and haemolymph protein and trehalose were analyzed. ...The supplementation with 50, 100 and 150μg/mL potassium chloride to the fifth instar larvae of the silkworm Bombyx mori on fat body glycogen, protein, total lipids and haemolymph protein and trehalose were analyzed. The fat body glycogen and protein and haemolymph protein were increased significantly in all the treated groups; whereas fat body total lipids increased only in 100 and 150μg/mL and haemolymph trehalose increased only in 150μg/mL potassium chloride-treated groups when compared with those of the corresponding parameters of the carrier controls.展开更多
文摘The clinical implications of non-alcoholic fatty liver diseases(NAFLD)derive from their potential to progress to fibrosis and cirrhosis.Inappropriate dietary fat intake,excessive intake of soft drinks,insulin resistance and increased oxidative stress results in increased free fatty acid delivery to the liver and increased hepatic triglyceride(TG)accumulation.An olive oil-rich diet decreases accumulation of TGs in the liver,improves postprandial TGs,glucose and glucagonlike peptide-1 responses in insulin-resistant subjects, and upregulates glucose transporter-2 expression in the liver.The principal mechanisms include:decreased nuclear factor-kappaB activation,decreased lowdensity lipoprotein oxidation,and improved insulin resistance by reduced production of inflammatory cytokines(tumor necrosis factor,interleukin-6)and improvement of jun N-terminal kinase-mediated phosphorylation of insulin receptor substrate-1.The beneficial effect of the Mediterranean diet is derived from monounsaturated fatty acids,mainly from olive oil.In this review,we describe the dietary sources of the monounsaturated fatty acids,the composition of olive oil,dietary fats and their relationship to insulin resistance and postprandial lipid and glucose responses in non-alcoholic steatohepatitis,clinical and experimental studies that assess the relationship between olive oil and NAFLD,and the mechanism by which olive oil ameliorates fatty liver,and we discuss future perspectives.
文摘This study included treatment of diabetic patients--type II with a polyherbs containing Nigella sativa, Trigonell foenum-graceum, Cyperus rotundus, Teucrium polium divided into two groups, first group was taken herbs with chemical treatment (drugs) and the other group which used herbs only. These groups were compared with healthy persons as a control group. Separation of the lipid component containing in the serum of two groups under study for diabetes mellitus patient--type lI before and after treatment with polyherbs by patients were performed. The separation of the components of different kinds of lipid parts like cholesterol ester (CE), triglyceride and phospholipids, in the blood using thin layer chromatography (TLC) and capillary gas chromatography (CGC). The results of this study for ester cholesterol part of serum patients show that there was a significant increase in the percentage of saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) before the treatment of the two groups compared to the control group and a significant decrease was observed in the percentage of these fatty acid after the treatment by polyherbal mixture than the percentage before treatment. Also, the results for the same part of ester cholesterol serum were showed a significant decrease in percentage of polyunsaturated fatty acid (PUFA) in the two groups of diabetes mellitus patients in comparison with the control group and there were a significant increase observed in PUFA percentage after the treatment. For triglyceride part in serum lipid, the results of this study were shown that there was a significant increase in percentage of SFA and PUFA before treatment in comparison with control group and after treatment for three months of the two groups of patients, shows a significant decrease in SFA but an increase in the percentage of PUFA was observed than that observed before treatment, also, there was a significant decrease in MUFA before treatment comparison with control group, while there was a significant increase which was observed after treatment in a percentage for the two groups of triglyceride part in serum lipid. The results indicated that there was a significant decrease in percentage of SFA before and after also in MUFA after the treatment in both groups compared with control and a significantly increase in PUFA percentage was also shown for phospholipids part in the serum.
文摘OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated FFAs and glucose may cross-amplify their individual injurious effects. METHODS: Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24 - 96 h. Morphologic alterations were observed using a phase contrast microscope and an electron microscope. Inhibition of proliferation was measured by a colorimetric 3-[4, 5-dimethyl thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell viability was determined using trypan blue exclusion. Distribution of cells along phases of the cell cycle was analyzed by flow cytometry. RESULTS: Glucose 15 or 30 mmol/L, palmitate (PA) 0.25 or 0.5 mmol/L, and oleate (OA) 0.5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose-and-time-dependent manner. After treatment with elevated glucose and/or FFAs, the G(0)/G(1) phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G(0)/G(1) phase. The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L + PA 0.25 mmol/L, glucose 30 mmol/L + OA 0.5 mmol/L, glucose 30 mmol/L + PA 0.25 mmol/L + OA 0.5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone. CONCLUSION: Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro. These changes were cross-amplified in the combined presence of high levels of glucose and FFAs.
文摘s To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro , and to examine whether the combined presence of elevated FFAs and glucose may cross amplify their individual injurious effects Methods Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24-96 h Morphologic alterations were observed using a phase contrast microscope and an electron microscope Inhibition of proliferation was measured by a colorimetric 3 [4, 5 dimethyl thiazol 2 yl] 2, 5 diphenyltetrazolium bromide (MTT) assay Cell viability was determined using trypan blue exclusion Distribution of cells along phases of the cell cycle was analyzed by flow cytometry Results Glucose 15 or 30 mmol/L, palmitate (PA) 0 25 or 0 5 mmol/L, and oleate (OA) 0 5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose and time dependent manner After treatment with elevated glucose and/or FFAs, the G 0/G 1 phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G 0/G 1 phase The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L+PA 0 25 mmol/L, glucose 30 mmol/L+OA 0 5 mmol/L, glucose 30 mmol/L+PA 0 25 mmol/L+OA 0 5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone Conclusion Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro These changes were cross amplified in the combined presence of high levels of glucose and FFAs
文摘The supplementation with 50, 100 and 150μg/mL potassium chloride to the fifth instar larvae of the silkworm Bombyx mori on fat body glycogen, protein, total lipids and haemolymph protein and trehalose were analyzed. The fat body glycogen and protein and haemolymph protein were increased significantly in all the treated groups; whereas fat body total lipids increased only in 100 and 150μg/mL and haemolymph trehalose increased only in 150μg/mL potassium chloride-treated groups when compared with those of the corresponding parameters of the carrier controls.