Electrochemical behaviors of Ti Ni shape memory alloy in fibrinogen solution were studied by electrochemical techniques. The results indicate that the addition of the fibrinogen has no obvious effect on the corrosion ...Electrochemical behaviors of Ti Ni shape memory alloy in fibrinogen solution were studied by electrochemical techniques. The results indicate that the addition of the fibrinogen has no obvious effect on the corrosion potential, but decreases the pitting potential markedly and increases the passive current densities. The analysis of energy dispersive X ray for samples adsorbing fibrinogen exhibits that the elements of O, C and N exist on the surface of Ti Ni alloy. Furthermore, the scanning electron microscope micrographs confirm that the configuration of the adsorbing fibrinogen concentrating on surface defects is like cluster and the fibrinogen adsorption concentration is 96.67 mg/m 2 through ultroviolet ray absorption method. Fibrinogen combined with Ti Ni alloy surface by complex band and its electrochemical transfer accelerated the corrosion of alloy.展开更多
文摘Electrochemical behaviors of Ti Ni shape memory alloy in fibrinogen solution were studied by electrochemical techniques. The results indicate that the addition of the fibrinogen has no obvious effect on the corrosion potential, but decreases the pitting potential markedly and increases the passive current densities. The analysis of energy dispersive X ray for samples adsorbing fibrinogen exhibits that the elements of O, C and N exist on the surface of Ti Ni alloy. Furthermore, the scanning electron microscope micrographs confirm that the configuration of the adsorbing fibrinogen concentrating on surface defects is like cluster and the fibrinogen adsorption concentration is 96.67 mg/m 2 through ultroviolet ray absorption method. Fibrinogen combined with Ti Ni alloy surface by complex band and its electrochemical transfer accelerated the corrosion of alloy.