A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species ...A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj^v and ky respectively, where ν(ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory: The form of the aggregate size distribution of A-species αk(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of ν ≤O, the form of ak (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν 〉 0, the form of αk(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.展开更多
Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled ene...Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold. The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly. Some of the orbits are created by the bifurcation of the perpendicular orbit. This case is quite similar to the Rydberg atom in an electric field. When the scaled energy increases furthermore, chaotic orbits appear. This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.展开更多
In the past twenty years,great achievements have been made by many researchers in the studies of chaotic behavior and local entropy theory of dynamical systems.Most of the results have been generalized to the relative...In the past twenty years,great achievements have been made by many researchers in the studies of chaotic behavior and local entropy theory of dynamical systems.Most of the results have been generalized to the relative case in the sense of a given factor map.In this survey we offer an overview of these developments.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10275048,10305009,and 10875086by the Zhejiang Provincial Natural Science Foundation of China under Grant No.102067
文摘A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj^v and ky respectively, where ν(ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory: The form of the aggregate size distribution of A-species αk(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of ν ≤O, the form of ak (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν 〉 0, the form of αk(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.
基金supported by National Natural Science Foundation of China under Grant No.10604045the Doctoral Scientific Research Startup Foundation of Ludong University under Grant No.202-23000301
文摘Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold. The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly. Some of the orbits are created by the bifurcation of the perpendicular orbit. This case is quite similar to the Rydberg atom in an electric field. When the scaled energy increases furthermore, chaotic orbits appear. This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.
基金supported by Foundation for the Authors of National Excellent Doctoral Dissertation of China (Grant No.201018)National Natural Science Foundation of China (Grant No. 10801035)Ministry of Education of China (Grant No. 200802461004)
文摘In the past twenty years,great achievements have been made by many researchers in the studies of chaotic behavior and local entropy theory of dynamical systems.Most of the results have been generalized to the relative case in the sense of a given factor map.In this survey we offer an overview of these developments.