Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is...Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is essential for catalytic reactions to occur,in this study,the synergistic effect of photothermal catalysis is innovatively elucidated in terms of the electron transfer behavior of reactant adsorption.For the H_(2)+O2 or CO+H_(2)reaction systems over a ZnO catalyst,UV irradiation at 25°C or heat without UV irradiation did not cause H_(2)oxidation or CO reduction;only photothermal conditions(100 or 150°C+UV light)initiated the two reactions.This result is related to the electron transfer behavior associated with the adsorption of CO or H_(2)on ZnO,in which H_(2)or CO that lost an electron could be oxidized by O2 or hydroxyls.However,the electron‐accepting CO could be reduced by the electron‐donating H_(2)into CH4 under photothermal conditions.Based on the in‐situ characterization and theoretical calculation results,it was established that the synergistic effect of the photothermal conditions acted on the(002)crystal surface of ZnO to stimulate the growth of zinc vacancies,which resulted in the formation of defect energy levels,adsorption sites,and an adjusted Fermi level.As a result,the electron transfer behavior between adsorbed CO or H_(2)and the crystal surface varied,which further affected the photocatalytic behavior.The results show that the effect of photothermal synergy may not only produce the expected kinetic energy,but more importantly,produce energy that can change the activation mode of the reactant gas.This study provides a new understanding of the CO catalytic oxidation and reduction processes over semiconductor materials.展开更多
Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to trad...Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.展开更多
文摘Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is essential for catalytic reactions to occur,in this study,the synergistic effect of photothermal catalysis is innovatively elucidated in terms of the electron transfer behavior of reactant adsorption.For the H_(2)+O2 or CO+H_(2)reaction systems over a ZnO catalyst,UV irradiation at 25°C or heat without UV irradiation did not cause H_(2)oxidation or CO reduction;only photothermal conditions(100 or 150°C+UV light)initiated the two reactions.This result is related to the electron transfer behavior associated with the adsorption of CO or H_(2)on ZnO,in which H_(2)or CO that lost an electron could be oxidized by O2 or hydroxyls.However,the electron‐accepting CO could be reduced by the electron‐donating H_(2)into CH4 under photothermal conditions.Based on the in‐situ characterization and theoretical calculation results,it was established that the synergistic effect of the photothermal conditions acted on the(002)crystal surface of ZnO to stimulate the growth of zinc vacancies,which resulted in the formation of defect energy levels,adsorption sites,and an adjusted Fermi level.As a result,the electron transfer behavior between adsorbed CO or H_(2)and the crystal surface varied,which further affected the photocatalytic behavior.The results show that the effect of photothermal synergy may not only produce the expected kinetic energy,but more importantly,produce energy that can change the activation mode of the reactant gas.This study provides a new understanding of the CO catalytic oxidation and reduction processes over semiconductor materials.
基金financially supported by the Budget for Nuclear Research of the Ministryof Education,Culture,Sports,Science and Technology,based on the screening and counseling by the Atomic Energy Commission of Japan
文摘Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.