Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an...Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.展开更多
Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coa...Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.展开更多
In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically xn a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine th...In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically xn a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine the critical boundary, and the sta- tistical complexity measure (SCM) is defined and calculated to quantify the dynamic complexity. It has been found that one can switch the dynamics from the periodic motion to a chaotic one or suppress the chaotic behavior to a periodic one, merely via adjusting the time delay or the amplitude of the recycled signal, therefore, providing a candidate to tame the dynamic com- plexity in nonlinear dynamical systems.展开更多
基金supported by the National Key Research and Development Program (No. 2016YFC0802301)the Shandong Province Science and Technology Major Project (No. 2015ZDZX04003)the Natural Science Foundation of Shandong Province (No. ZR2016GM06)
文摘Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
基金Supported by the National Natural Science Foundation of China (50974059)
文摘Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.
基金supported by the National Natural Science Foundation of China(Grant No.11272258)the NPU Foundation for Fundamental Research
文摘In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically xn a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine the critical boundary, and the sta- tistical complexity measure (SCM) is defined and calculated to quantify the dynamic complexity. It has been found that one can switch the dynamics from the periodic motion to a chaotic one or suppress the chaotic behavior to a periodic one, merely via adjusting the time delay or the amplitude of the recycled signal, therefore, providing a candidate to tame the dynamic com- plexity in nonlinear dynamical systems.