In order to deeply analyze the differences in the acceptance of autonomous driving technology among different gender groups,a multiple indicators and multiple causes model was constructed by integrating a technology a...In order to deeply analyze the differences in the acceptance of autonomous driving technology among different gender groups,a multiple indicators and multiple causes model was constructed by integrating a technology acceptance model and theory of planned behavior to comprehensively reveal the gender differences in the influence mechanisms of subjective and objective factors.The analysis is based on data collected from Chinese urban residents.Among objective factors,age has a significant negative impact on women's perceived behavior control and a significant positive impact on perceived ease of use.Education has a significant positive impact on men's perceived behavior control,and has a strong positive impact on women's perceived usefulness(PU).For men,income and education are found to have strong positive impacts on perceived behavior control.Among subjective factors,perceived ease of use(PEU)has the greatest influence on women's behavior intention,and it is the only influential factor for women's intention to use autonomous driving technology,with an influence coefficient of 0.72.The influencing path of men's intention to use autonomous driving technology is more complex.It is not only directly affected by the significant and positive joint effects of attitude and PU,but also indirectly affected by perceived behavior controls,subjective norms,and PEU.展开更多
The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the t...The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.展开更多
This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called 'Soft Control' which keeps the local...This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called 'Soft Control' which keeps the local rule of the existing agents in the system. We show the feasibility of soft control by a case study. Consider the simple but typical distributed multi-agent model proposed by Vicsek et al. for flocking of birds: each agent moves with the same speed but with different headings which are updated using a local rule based on the average of its own heading and the headings of its neighbors. Most studies of this model are about the self-organized collective behavior, such as synchronization of headings. We want to intervene in the collective behavior (headings) of the group by soft control. A specified method is to add a special agent, called a 'Shill', which can be controlled by us but is treated as an ordinary agent by other agents. We construct a control law for the shill so that it can synchronize the whole group to an objective heading. This control law is proved to be effective analytically and numerieally. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.展开更多
A double-layer microfluidic chip integrated with a hollow fiber(HF)was developed to reconstitute the intestine-liver functionality for studying the absorption and metabolism of combination drugs.Caco-2 cells were inoc...A double-layer microfluidic chip integrated with a hollow fiber(HF)was developed to reconstitute the intestine-liver functionality for studying the absorption and metabolism of combination drugs.Caco-2 cells were inoculated in the HF cavity at the top of the serpentine channel to simulate the intestinal tissue for drug absorption and transport studied,and Hep G2 cells,seeded in the bottom chamber,were used to mimic the liver for metabolism-related studies.Genistein and dacarbazine were selected for combination drug therapy and its effects on cell viability,hepatotoxicity,and cell cycle arrest under drug-conditioned culture were investigated.The results suggested that the combined concentration below-100μg/m L had no significant inhibitory effect on Hep G2 cell viability,and therefore Hep G2 cells maintained their drug metabolism ability.When the drug concentration was increased above 250μg/m L,Hep G2 cells underwent apoptosis.Detection of metabolites by mass spectrometry proved the effective metabolism in the microchip model.This dynamic,co-culture microchip successfully provided a podium for long-term observation of absorption,transport,and metabolism of combination drugs,and could be an effective in vitro simulation model for further clinical research.展开更多
A mathematical model describing the dynamics of toxin producing phytoplankton- zooplankton interaction with instantaneous nutrient recycling is proposed. We have explored the dynamics of plankton ecosystem with multip...A mathematical model describing the dynamics of toxin producing phytoplankton- zooplankton interaction with instantaneous nutrient recycling is proposed. We have explored the dynamics of plankton ecosystem with multiple delays; one due to gestation period in the growth of phytoplankton population and second due to the delay in toxin liberated by TPP. It is established that a sequence of Hopf bifurcations occurs at the interior equilibrium as the delay increases through its critical value. The direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined using the theory of normal form and center manifold. Meanwhile, effect of toxin on the stability of delayed plankton system is also established numerically. Finally, numerical simulations are carried out to support and supplement the analytical findings.展开更多
基金The National Key Research and Development Program of China(No.2018YFB1601304)the National Natural Science Foundation of China(No.71871107)Philosophy and Social Science Foundation Project of Universities in Jiangsu Province(No.2020SJA2059).
文摘In order to deeply analyze the differences in the acceptance of autonomous driving technology among different gender groups,a multiple indicators and multiple causes model was constructed by integrating a technology acceptance model and theory of planned behavior to comprehensively reveal the gender differences in the influence mechanisms of subjective and objective factors.The analysis is based on data collected from Chinese urban residents.Among objective factors,age has a significant negative impact on women's perceived behavior control and a significant positive impact on perceived ease of use.Education has a significant positive impact on men's perceived behavior control,and has a strong positive impact on women's perceived usefulness(PU).For men,income and education are found to have strong positive impacts on perceived behavior control.Among subjective factors,perceived ease of use(PEU)has the greatest influence on women's behavior intention,and it is the only influential factor for women's intention to use autonomous driving technology,with an influence coefficient of 0.72.The influencing path of men's intention to use autonomous driving technology is more complex.It is not only directly affected by the significant and positive joint effects of attitude and PU,but also indirectly affected by perceived behavior controls,subjective norms,and PEU.
基金supported by National Natural Science Foundation of China under Grant No. 10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.
基金This work was supported by the National Natural Science Foundation of China(No.20336040.No.60574068.and No.60221301).
文摘This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called 'Soft Control' which keeps the local rule of the existing agents in the system. We show the feasibility of soft control by a case study. Consider the simple but typical distributed multi-agent model proposed by Vicsek et al. for flocking of birds: each agent moves with the same speed but with different headings which are updated using a local rule based on the average of its own heading and the headings of its neighbors. Most studies of this model are about the self-organized collective behavior, such as synchronization of headings. We want to intervene in the collective behavior (headings) of the group by soft control. A specified method is to add a special agent, called a 'Shill', which can be controlled by us but is treated as an ordinary agent by other agents. We construct a control law for the shill so that it can synchronize the whole group to an objective heading. This control law is proved to be effective analytically and numerieally. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.
基金supported by the National Natural Science Foundation of China (81373373, 21435002, 21621003)
文摘A double-layer microfluidic chip integrated with a hollow fiber(HF)was developed to reconstitute the intestine-liver functionality for studying the absorption and metabolism of combination drugs.Caco-2 cells were inoculated in the HF cavity at the top of the serpentine channel to simulate the intestinal tissue for drug absorption and transport studied,and Hep G2 cells,seeded in the bottom chamber,were used to mimic the liver for metabolism-related studies.Genistein and dacarbazine were selected for combination drug therapy and its effects on cell viability,hepatotoxicity,and cell cycle arrest under drug-conditioned culture were investigated.The results suggested that the combined concentration below-100μg/m L had no significant inhibitory effect on Hep G2 cell viability,and therefore Hep G2 cells maintained their drug metabolism ability.When the drug concentration was increased above 250μg/m L,Hep G2 cells underwent apoptosis.Detection of metabolites by mass spectrometry proved the effective metabolism in the microchip model.This dynamic,co-culture microchip successfully provided a podium for long-term observation of absorption,transport,and metabolism of combination drugs,and could be an effective in vitro simulation model for further clinical research.
文摘A mathematical model describing the dynamics of toxin producing phytoplankton- zooplankton interaction with instantaneous nutrient recycling is proposed. We have explored the dynamics of plankton ecosystem with multiple delays; one due to gestation period in the growth of phytoplankton population and second due to the delay in toxin liberated by TPP. It is established that a sequence of Hopf bifurcations occurs at the interior equilibrium as the delay increases through its critical value. The direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined using the theory of normal form and center manifold. Meanwhile, effect of toxin on the stability of delayed plankton system is also established numerically. Finally, numerical simulations are carried out to support and supplement the analytical findings.